K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

bạn có học toán thầy minh ko? mình cũng đang vướng câu này

11 tháng 10 2017

a chào sơn

9 tháng 1 2022

Ta có BH là đường trung trực của AE nên AB=BE⇒ΔABE cân tại B

Ta có CH là đường trung trực của AE nên AC=CE⇒ΔACE cân tại C

11 tháng 3 2020

A B C H E 1 2 4 3

TA CÓ HAI ĐỌC THẲNG AE VÀ BC CẮT NHAU TẠI H VÀ CÓ MỘT GÓC BẰNG 90 

\(\Rightarrow\widehat{H_1}=\widehat{H_2}=\widehat{H_3}=\widehat{H_4}=90\)

XÉT \(\Delta BAH\)\(\Delta BEH\)

BH LÀ CẠNH CHUNG

\(\widehat{H_1}=\widehat{H_2}\left(CMT\right)\)

\(AH=EH\left(GT\right)\)

\(\Rightarrow\Delta BAH=\Delta BEH\left(C-G-C\right)\)

\(\Rightarrow AB=BE\)

VẬY \(\Delta BAE\)CÂN TẠI B(ĐPCM)

XÉT \(\Delta ACH\)\(\Delta ECH\)

CH LÀ CẠNH CHUNG

\(\widehat{H_1}=\widehat{H_3}\left(CMT\right)\)

\(AH=EH\left(GT\right)\)

\(\Rightarrow\Delta ACH=\Delta ECH\left(C-G-C\right)\)

\(\Rightarrow AC=EC\)

VẬY \(\Delta CAE\)CÂN TẠI C (ĐPCM)

11 tháng 3 2020

ai giúp mik vs 

a Xét ΔAHB và ΔAHC có

AB=AC

AH chung

HB=HC

=>ΔAHB=ΔAHC

b: Xét ΔAHB vuông tại H và ΔMHC vuông tại H có

HA=HM

HB=HC

=>ΔAHB=ΔMHC

=>góc HAB=góc HMC

=>AB//MC và AB=MC=AC

=>ΔMCA cân tại C

15 tháng 4 2023

câu c đâu bạn

 

21 tháng 12 2021

a: Xét ΔABH và ΔACH có

AB=AC

AH chung

HB=HC

Do đó: ΔABH=ΔACH

29 tháng 12 2021

Đề thiếu rồi bạn

 

a: Xét ΔCAD có

CH vừa là đường cao, vừa là trung tuyến

=>ΔCAD cân tại C

b: Xet ΔCAB và ΔCDB có

CA=CD

góc ACB=góc DCB

CB chung

=>ΔCAB=ΔCDB

a: Xét ΔCAD có

CH vừa là đường cao, vừa là trung tuyến

=>ΔCAD cân tại C

b: Xet ΔCAB và ΔCDB có

CA=CD

góc ACB=góc DCB

CB chung

=>ΔCAB=ΔCDB

26 tháng 4 2023

Cảm ơn cậu!yeu

9 tháng 1 2022

a, Ta có :

 \(AB^2+AC^2=3^2+4^2=25\)

\(BC^2=5^2=25\)

\(=> AB^2+AC^2=BC^2\)

\(=> \) △ABC vuông tại A

b, Xét △BAH và △BEH có :

\(\widehat{BHA}=\widehat{BHE}=90^o\)

BH : chung

HE = HA (GT)

=> △BAH = △BEH (c.g.c)

=> BA = BE (2 cạnh tương ứng)

c, Xét △CAH và △CEH có :

\(\widehat{CHA}=\widehat{CHE}=90^o\)

\(CH\) :chung

AH = HE (GT)

=> △CAH = △CEH (c.g.c)

=> \(\widehat{C_1}=\widehat{C_2}\)

=> CH là phân giác \(\widehat{ACE}\)

d, Xét △BAC và △BEC có :

\(BA=BE (câu a)\)

CA = CE (△CAH = △CEH)

BC : chung

=> △BAC = △BEC(c.c.c)

=> \(\widehat{BAC}=\widehat{BEC}\)

mà \(\widehat{BAC}=90^o\)

\(=> \widehat{BEC}=90^o\)

=> △BEC vuông tại E