So sánh mà ko tính giá trị cụ thể:
1/ \(^{27^{15}}\)và \(^{81^{11}}\) 2/ \(6^{6033}\) và \(3^{10055}\) 3/ \(777^{333}\) và \(333^{777}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
32n và 23n
Có: 32n = (32)n = 9n
23n = (23)n = 8n
Vì 9n > 8n nên 32n > 23n
a) \(27^{15}=\left(3^3\right)^{15}=3^{45}\)
\(81^{11}=\left(3^4\right)^{11}=3^{44}\)
vì 344 < 345 nên 8111 < 2715
a/ 777333 = [(7 . 111)3]111 = (73 . 1113)111
333777 = [(3 . 111)7]111 = (37 . 1117)111
Do: 37 > 73 ; 1117 > 1113 => (37 . 1117)111 > (73 . 1113)111
=> 333777 > 777333
có \(777^{333}=\left(7.111\right)^{333}=7^{333}.111^{333}=7^{3.111}.111^{333}=\left(7^3\right)^{111}.111^{333}=343^{111}.111^{333}\)
mà \(333^{777}=\left(3.111\right)^{777}=3^{777}.111^{777}=\left(3^7\right)^{111}.111^{777}=2187^{111}.111^{777}\)
ta thấy \(343^{111}< 2187^{111},111^{333}< 111^{777}\)
=> \(343^{111}.111^{333}< 2187^{111}.111^{777}\)=> \(333^{777}< 777^{333}\)
vậy...
Edogawa conan
1) 2715 = (33)15 = 345
8111 = (34)11 = 344
Vì 345 > 344 nen 2715 > 8111
1) \(27^{15}=\left(3^3\right)^{15}=3^{45}\)
\(81^{11}=\left(3^4\right)^{11}=3^{44}\)
vi \(3^{45}>3^{44}\)nen \(27^{15}>81^{11}\)