Cho góc xOy < 90 độ. Lấy A, B trên Ox sao cho A nằm giữa O và B. Lấy C, D trên Oy sao cho OA=OC và AB=CD.
a) Chứng minh ΔOBD cân.
b) So sánh AD và BC. Gọi I là giao điểm của AD và BC. ΔIBD và ΔIAC là tam giác gì?
c) Chứng minh ΔOAI = ΔOCI.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOCB và ΔOAD có
OC=OA
góc O chung
OB=OD
=>ΔOCB=ΔOAD
=>BC=AD
b: Xét ΔIAB và ΔICD có
góc IBA=góc IDC
AB=CD
góc IAB=góc ICD
=>ΔIAB=ΔICD
=>IA=IC và IB=ID
=>ΔIAC cân tại I và ΔIBD cân tại I
a: Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{O}\) chung
OD=OC
Do đó: ΔOAD=ΔOBC
Suy ra: AD=BC
b: Xét ΔACD và ΔBDC có
AC=BD
\(\widehat{ACD}=\widehat{BDC}\)
CD chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{EAC}=\widehat{EBD}\)
Xét ΔEAC và ΔEBD có
\(\widehat{EAC}=\widehat{EBD}\)
AC=BD
\(\widehat{ECA}=\widehat{EDB}\)
Do đó: ΔEAC=ΔEBD
a
xét tam giác AOD và BCD có:
góc D chung,OB=OA,OC=OD
=>tam giác AOD=BCD=>BC=AD
vì OC+CA=OA,OD+DB=OB mà OC=OD,OA=OB
=>AC=BD
xét tam giác ADB và BCA có:
AC=BD,AB chung,BC=AD
=>ADB=BCA
b
xét tam giác OIA và OIB có
OA=OB,OI chung,IA=IB
=>tam giác OIA=OIB=>góc AOI=góc BOI=>OI là phân giác góc xOy
XET tg obc va oad ta co
oc=od
o la goc chung
ob = oa
do đó tg obc = tg oad (c.g.c)
a: Ta có: OA+AB=OB
OC+CD=OD
mà OA=OC và AB=CD
nên OB=OD
=>ΔOBD cân tại O
b: Xét ΔABD và ΔCDB có
AB=CD
\(\widehat{ABD}=\widehat{CDB}\)(ΔDOB cân tại O)
BD chung
Do đó: ΔABD=ΔCDB
=>\(\widehat{IDB}=\widehat{IBD}\)
=>ΔIBD cân tại I
=>IB=ID
Ta có: ΔABD=ΔCDB
=>AD=BC
ta có: AD=AI+ID
BC=BI+CI
mà ID=IB và AD=BC
nên IA=IC
=>ΔIAC cân tại I
c: Xét ΔOAI và ΔOCI có
OA=OC
AI=CI
OI chung
Do đó: ΔOAI=ΔOCI