Tìm X Y thuộc Z biết (x - 3) x (y + 4) = 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left|x+4\right|< 3\)
\(\Rightarrow\left|x+4\right|\in\left\{0;1;2\right\}\)
\(\Rightarrow x+4\in\left\{0;\pm1;\pm2\right\}\)
Ta có bảng
x+4 | 0 | 1 | -1 | 2 | -2 |
x | -4 | -3 | -5 | -2 | -6 |
Vậy...
b) ta có: \(\left|x-14+17\right|+\left|y+10-12\right|\le0\)
Mà \(\left|x-14+17\right|+\left|y+10-12\right|\ge0\)
\(\Rightarrow\left|x-14+17\right|+\left|y+10-12\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x-14+17\right|=0\\\left|y+10-12\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-14+17=0\\y+10-12=0\end{cases}\Rightarrow}\hept{\begin{cases}x=14-17\\y=-10+12\end{cases}\Rightarrow}\hept{\begin{cases}x=-3\\y=2\end{cases}}}\)
Vậy ....
hok tốt!!
á) | x + 4 | < 3
Ta lại có | x + 4 | ≥ 0 \(\forall\) x ∈ Z
Mà x ∈ Z
<=> | x + 4 | ∈ { 0 ; 1 ; 2 }
\(\Leftrightarrow x+4\in\left\{0;1;-1;2;-2\right\}\)
<=> x ∈ { - 4 ; - 3 ; - 7 ; - 2 ; - 6 }
Vậy ...
b) | x - 14 + 17 | + | y + 10 - 12 | ≤ 0
<=> | x + 3 | + | y - 2 | ≤ 0
+) Lại có \(\hept{\begin{cases}\left|x+3\right|\text{≥}0\\\left|y-2\right|\text{≥}0\end{cases}\forall x;y}\)
<=> | x + 3 | + | y - 2 | ≥ 0 \(\forall\) x ; y
Do đó để | x + 3 | + | y - 2 | ≤ 0 thì \(\hept{\begin{cases}\left|x+3\right|=0\\\left|y-2\right|=0\end{cases}}\)
<=> \(\hept{\begin{cases}x+3=0\\y-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-3\\y=2\end{cases}}\)
Vậy ..... <=> x = - 3 và y = 2
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
a) 3x = 7y ⇒ x/7 = y/3
⇒ x/7 = 2y/6
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/7 = 2y/6 = (x - 2y)/(7 - 6) = 2/1 = 2
x/7 = 2 ⇒ x = 2.7 = 14
y/3 = 2 ⇒ y = 2.3 = 6
Vậy x = 14; y = 6
b) x/2 = y/3 ⇒ x/6 = y/9 (1)
x/3 = z/4 ⇒ x/6 = z/8 (2)
Từ (1) và (2) ⇒ x/6 = y/9 = z/8
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/6 = y/9 = z/8 = (x + y - z)/(6 + 9 - 8) = 7/7 = 1
x/6 = 1 ⇒ x = 1.6 = 6
y/9 = 1 ⇒ y = 1.9 = 9
z/8 = 1 ⇒ z = 1.8 = 8
Vậy x = 6; y = 9; z = 8
c) x/2 = y/3 ⇒ x/10 = y/15 ⇒ 2x/20 = y/15 (3)
y/5 = z/4 ⇒ y/15 = z/12 (4)
Từ (3) và (4) ⇒ 2x/20 = y/15 = z/12
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
2x/20 = y/15 = z/12 = (2x - y + z)/(20 - 15 + 12) = 17/17 = 1
2x/20 = 1 ⇒ x = 1.20 : 2 = 10
y/15 = 1 ⇒ y = 1.15 = 15
z/12 = 1 ⇒ z = 1.12 = 12
Vậy x = 10; y = 15; z = 12
\(\dfrac{7}{2x+2}=\dfrac{3}{2y-4}=\dfrac{5}{z+4}\Rightarrow\dfrac{7}{2x+2}=\dfrac{3}{2y-4}=\dfrac{10}{2z+8}\)(*)
Theo t/c dãy tỉ số bằng nhau
(*) = \(\dfrac{7+3+10}{2x+2y+2z+6}=\dfrac{20}{34+6}=\dfrac{20}{40}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{2x+2}{7}=2\Leftrightarrow x=6;\dfrac{2y-4}{3}=2\Leftrightarrow y=5;\dfrac{2z+8}{10}=2\Leftrightarrow z=6\)
a; \(\dfrac{-x}{4}\) = \(\dfrac{-2}{x}\)
-\(x.x\) = -2.4
-\(x^2\) = -8
\(x^2\) = 8
\(\left[{}\begin{matrix}x=-\sqrt{8}\\x=\sqrt{8}\end{matrix}\right.\)
Vậy \(x\in\) {-\(\sqrt{8}\); \(\sqrt{8}\)}
\(\left(x-3\right)\left(y+4\right)=17\)
\(\Rightarrow x-3;y+4\inƯ\left(17\right)=\left\{1;17;-1;-17\right\}\)
Ta có bảng sau
Vạy 4 cặp (x,y) thoả mãn là \(\left(20;-3\right);\left(4;13\right);\left(2;-21\right);\left(-14;-5\right)\)
(x-3)(y+4)=17
=>\(\left(x-3\right)\left(y+4\right)=1\cdot17=17\cdot1=\left(-1\right)\cdot\left(-17\right)=\left(-17\right)\cdot\left(-1\right)\)
=>\(\left(x-3;y+4\right)\in\left\{\left(1;17\right);\left(17;1\right);\left(-1;-17\right);\left(-17;-1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(4;13\right);\left(20;-3\right);\left(2;-21\right);\left(-14;-5\right)\right\}\)