△ABC có AB<AC, M là trung điểm của BC. Đường thẳng qua M vuông góc với phân giác của góc A tại I cắt AB, AC lần lượt tại P và Q. CM:
a) IM=\(\dfrac{PM-MQ}{2}\)
b)Góc CMQ =(^ABC - ^C) : 2
c) BP=QC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a chia cho 54 dư 38 => a = 54k + 38 = 18.3k + 36 + 2 = 18.(3k +2) + 2
=> a chia cho 18 dư 2; a chia hco 18 được thương là 14
=> a = 18.14 + 2 = 254
b) => 100a + 10b + c + 10a + b + a = 874
=> 111a + 11b + c = 874
=> 111a < 874 => a < 8
Hơn nữa, 11b + c < 11.10 + 10 = 120 => 111a + 11b + c < 120 + 111a
=> 111a + 120 > 874 => 111a > 754 => a > 6 mà a < 8 nên a = 7
vậy 777 + 11b + c = 874 => 11b + c = 874 - 777 = 97
Tương tự, => b < 9 và b > 7 => b = 8 => 88 + c = 97 => c = 9
Vậy abc = 789
Tổng độ dài hai cạnh AB và AC là :
24 - 10 = 14 ( cm )
Độ dài cạnh AB là :
14 : ( 3 + 4 ) x 3 = 6 ( cm )
Độ dài cạnh AC là :
14 - 6 = 9 ( cm )
Diện tích hình tam giác ABC là :
6 x 9 : 2 = 27 ( cm2)
Đáp số : 27 cm2
tổng độ dài hai cạnh là
24-10=14 cm
độ dại cạnh AB là
14:(3+4).3=6 cm
độ dài cạnh AC là
14-6=8 cm
diện tích là
6.7:2=27cm2
đáp số...............
Để chứng minh các phát biểu đã cho:
a) Ta có:
\[IM = \frac{AM}{\sqrt{2}}\]
\[= \frac{AP + PM}{\sqrt{2}} - \frac{AQ + MQ}{\sqrt{2}}\]
\[= \frac{AP}{\sqrt{2}} - \frac{AQ}{\sqrt{2}}\]
\[= \frac{PM - MQ}{\sqrt{2}}\]
\[= \frac{PM - MQ}{2}\]
Vậy, a) được chứng minh.
b) Góc CMQ là góc giữa đường thẳng MQ và phân giác của góc A, vì vậy góc CMQ chính bằng một nửa của sự chênh lệch giữa các góc \(ABC\) và \(C\).
\[ \angle CMQ = \frac{1}{2} (\angle ABC - \angle C) \]
c) Để chứng minh \(BP = QC\), chúng ta sẽ sử dụng định lý Phân Tỉ của đường thẳng song song, nghĩa là \(BP/CQ = BM/CM = 1/1\), từ đó suy ra \(BP = QC\).
Vậy, c) cũng được chứng minh.
Do đó, lời giải là:
a) \(IM = \frac{PM - MQ}{2}\)
b) \(Góc CMQ = \frac{(^ABC-^C)}{2}\)
c) \(BP = QC\) tui ko chắc
CM theo lớp 7 bạn ơi