cho tam giác abc, m và n lần lượt là trung điểm của hai cạnh ab và ac.bn cắt cm tại i
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) Chứng minh tứ giác BHIK là hình thoi.
Ta có A B C ^ = A N C ^ (góc nội tiếp cùng chắn cung A C ⏜ )
Mà A M C ^ = A H I ^ (góc nội tiếp cùng chắn cung I C ⏜ )
⇒ A B C ^ = I K C ^ Mà 2 góc này ở vị trí đồng vị nên H B / / I K (1)
+ Chứng minh tương tự phần 1 ta có tứ giác AMHI nội tiếp
A N C ^ = I K C ^ (góc nội tiếp cùng chắn cung A I ⏜ )
Ta có A B C ^ = A M C ^ (góc nội tiếp cùng chắn cung A C ⏜ )
⇒ A B C ^ = A H I ^ Mà 2 góc này ở vị trí đồng vị nên B K / / H I (2)
Từ (1) và (2) suy ra tứ giác BHIK là hình bình hành.
Mặt khác AN, CM lần lượt là các tia phân giác của các góc A và C trong tam giác ABC nên I là giao điêm 3 đường phân giác, do đó BI là tia phân giác góc B
Vậy tứ giác BHIK là hình thoi (dấu hiệu nhận biết hình thoi).
4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.
Vì N là điểm chính giữa cung nhỏ BC nên DN là trung trực của BC nên DN là phân giác B D C ^
Ta có K Q C ^ = 2 K M C ^ (góc nọi tiếp bằng nửa góc ở tâm trong dường tròn (Q))
N D C ^ = K M C ^ (góc nội tiếp cùng chắn cung N C ⏜ )
Mà B D C ^ = 2 N D C ^ ⇒ K Q C ^ = B D C ^
Xét 2 tam giác BDC & KQC là các các tam giác vuông tại D và Q có hai góc ở ⇒ B C D ^ = B C Q ^ do vậy D, Q, C thẳng hàng nên KQ//PK
Chứng minh tương tự ta có ta có D, P, B thẳng hàng và DQ//PK
Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng (điều phải chứng minh).
2) Chứng minh N B 2 = N K . N M .
Ta có N là điểm chính giữa cung B C ⏜ ⇒ B N ⏜ = C N ⏜ ⇒ B M N ^ = C M N ^ (góc nội tiếp chắn 2 cung bằng nhau)
Mà C B N ^ = C M N ^ (góc nội tiếp chắn cùng chắn cung C N ⏜ )
C B N ^ = B M N ^ (cùng bằng góc C M N ^ ) ⇒ K B N ^ = B M N ^
Xét Δ K B N v à Δ B M N có:
N ^ chung
K B N ^ = B M N ^
⇒ Δ K B N ∽ Δ B M N ⇒ K N B N = B N M N ⇒ N B 2 = N K . N M
(điều phải chứng minh).
a) Ta thấy: Tam giác ABC vuông tại A; DN vuông góc AC=> DN//AB => \(\frac{DF}{FN}=\frac{BM}{AM}\)(Hệ quả của ĐL Thales) (1)
Lại có: DM vuông góc AB; ^BAC=900 => DM//AC hay EM//AN => \(\frac{BM}{AM}=\frac{BE}{EN}\)(ĐL Thales) (2)
Từ (1) và (2) => \(\frac{DF}{FN}=\frac{BE}{EN}\)=> \(EF\)//\(BD\)(ĐL Thales đảo)
hay \(EF\)//\(BC\)(đpcm)
b) Dễdàng c/m được: Tứ giác AMDN là hình vuông => AM=MD=DN=AN
Gọi giao điểm của AE và FM là O
Ta có: \(\frac{DF}{DN}=\frac{BM}{AB}=\frac{BD}{BC}\)(Hệ quả ĐL Thales) (3)
Tương tự: \(\frac{EM}{MD}=\frac{AN}{AC}=\frac{BD}{BC}\)(4)
Từ (3) và (4) => \(\frac{DF}{DN}=\frac{EM}{MD}\)Mà DN=MD => DF=EM.
Xét \(\Delta\)AME và \(\Delta\)MDF:
AM=MD
^AME=^MDF => \(\Delta\)AME=\(\Delta\)MDF (c.g.c) => ^MAE=^DMF (2 góc tương ứng)
EM=DF (cmt)
Lại có: ^MAE+^MEA=900 => ^DMF+MEA=900 hay ^EMO+^MEO=900
Xét \(\Delta\)MEO: ^EMO+^MEO=900 =. \(\Delta\)MEO vuông tại O => FM vuông góc với AE
Tương tự ta c/m được EN vuông góc với AF
=> FM và EN là 2 đường cao của tam giác AEF. mà 2 đoạn này cắt nhau tại K
Vậy K là trực tâm tam giác AEF (đpcm).
c) Gọi BI giao AD tại H
K là trực tâm tam giác AEF (cmt) => AK vuông góc EF .Mà EF//BC (cmt) => AK vuông góc với BC
hay AK vuông góc với BD
Xét tam giác BAD:
AK vuông góc BD
DM vuông góc AB => I là trực tâm tam giác BAD
AK cắt DM tại I
=> BI vuông góc AD => IH vuông góc với AD.
Lại có ^HDI=^ADM=450 => Tam giác IHD vuông cân tại H
=> ^HID = 450 => ^BID=1350.
Vậy ^BID=1350.
1) Chứng minh bốn điểm C, N, K, I cùng thuộc một đường tròn.
Ta có M là điểm chính giữa cung A B ⏜ ⇒ A M ⏜ = B M ⏜ ⇒ M N A ^ = M C B ^
⇒ K N I ^ = I C K ^ . Tứ giác CNKJ có C và N là 2 đỉnh kề nhau cùng nhìn cạnh KJ dưới góc bằng nhau nên CNKJ nội tiếp (dấu hiệu nhận biết tứ giác nội tiếp)
Do đó bốn điểm C, N, K, I cùng thuộc một đường tròn.
a: Xét ΔNAB có
NM vừa là đường cao, vừa là trung tuyến
nên ΔBAN cân tại N
b: Xét ΔBAC có
M là trung điểm của BA
MN//AC
Do đó: N là trung điểm của BC