K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(M\left(x\right)=3\left(x^2-4\right)+x^4+12\)

\(=3x^2-12+x^4+12=x^4+3x^2=x^2\left(x^2+3\right)\)

Đặt M(x)=0

=>\(x^2\left(x^2+3\right)=0\)

=>\(x^2=0\)

=>x=0

AH
Akai Haruma
Giáo viên
3 tháng 4 2022

Lời giải:
Để pt có 2 nghiê pb thì:

$\Delta'=1-(m-3)>0\Leftrightarrow m< 4$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=m-3\end{matrix}\right.\)

Khi đó:
\(x_1^2-2x_2+x_1x_2=-12\)

\(\Leftrightarrow x_1^2-2(2-x_1)+x_1(2-x_1)=-12\)

\(\Leftrightarrow x_1=-2\Leftrightarrow x_2=2-x_1=4\)

$m-3=x_1x_2=(-2).4=-8$

$\Leftrightarrow m=-5$ (tm)

20 tháng 12 2020

giúp mik với đi ạ mik thực sự đang cần gấp

`@` `\text {dnv4510}`

`A)`

`P(x)+Q(x)=`\((2x^4+3x^2-3x^2+6)+(x^4+x^3-x^2+2x+1)\)

`= 2x^4+3x^2-3x^2+6+x^4+x^3-x^2+2x+1`

`= (2x^4+x^4)+x^3+(3x^2-3x^2-x^2)+2x+(6+1)`

`= 3x^4+x^3-x^2+2x+7`

`B)`

`P(x)+M(x)=2Q(x)`

`-> M(x)= 2Q(x) - P(x)`

`2Q(x)=2(x^4+x^3-x^2+2x+1)`

`= 2x^4+2x^3-2x^2+4x+2`

`-> 2Q(x)-P(x)=(2x^4+2x^3-2x^2+4x+2)-(2x^4+3x^2-3x^2+6)`

`= 2x^4+2x^3-2x^2+4x+2-2x^4-3x^2+3x^2-6`

`= (2x^4-2x^4)+2x^3+(-2x^2-3x^2+3x^2)+4x+(2-6)`

`= 2x^3-2x^2+4x-4`

Vậy, `M(x)=2x^3-2x^2+4x-4`

`C)`

Thay `x=-4`

`M(-4)=2*(-4)^3-2*(-4)^2+4*(-4)-4`

`= 2*(-64)-2*16-16-4`

`= -128-32-16-4`

`= -180`

`->` `x=-4` không phải là nghiệm của đa thức.

3 tháng 5 2023

thnk nha mik làm xong r

ha

21 tháng 3 2022

\(a,\Delta'=\left(-1\right)^2-\left(m-3\right)=1-m+3=4-m\)

Để pt trên có nghiệm thì \(4-m\ge0\Leftrightarrow m\le4\)

b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-3\end{matrix}\right.\)

\(\left(x_1+x_2\right)^2=16+2x_1x_2\\ \Leftrightarrow2^2=16+2\left(m-3\right)\\ \Leftrightarrow2m-6+16-4=0\\ \Leftrightarrow2m+6=0\\ \Leftrightarrow m=-3\left(tm\right)\)

21 tháng 3 2022

dạ cho em hỏi tm là gì ạ?

 

a) Bạn tự giải

b) Ta có: \(\Delta'=m^2-5\)

Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\) \(\Leftrightarrow\left[{}\begin{matrix}m>\sqrt{5}\\m< -\sqrt{5}\end{matrix}\right.\)

 Vậy ...

a) Thay m=2 vào pt, ta được:

\(x^2-2\left(2-1\right)x-2\cdot2+6=0\)

\(\Leftrightarrow x^2-2x+2=0\)

\(\Leftrightarrow x^2-2x+1+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+1=0\)(Vô lý)

Vậy: Khi m=2 thì phương trình vô nghiệm

b) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-2m+6\right)\)

\(=\left(2m-2\right)^2-4\left(-2m+6\right)\)

\(=4m^2-8m+4+8m-24\)

\(=4m^2-20\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow4m^2-20>0\)

\(\Leftrightarrow4m^2>20\)

\(\Leftrightarrow m^2>5\)

\(\Leftrightarrow\left[{}\begin{matrix}m< -\sqrt{5}\\m>\sqrt{5}\end{matrix}\right.\)

20 tháng 12 2020

làm ơn giúp mik với đi ạ

2 tháng 1 2021

\(D=m^2-1;D_x=m^2-1;D_y=0\)

Nếu \(D=m^2-1\ne0\Leftrightarrow m\ne\pm1\)

Hệ phương trình đã cho có nghiệm \(\left(x;y\right)=\left(1;0\right)\)

Nếu \(D=m^2-1=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)

Hệ phương trình đã cho có vô số nghiệm