K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

Làm theo cái này:

Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath

P/s: Bấmvào dòng chữ xanh nhé

28 tháng 9 2017

cam on nhung ko giong cau cua mk bn nhé

1 tháng 7 2016

X/2=y/2=z/4=x+y+z/9=18/9=2

X=2.2=4

Y=2.3=6

Z=2.4=8

1 tháng 7 2016

a) x/2 = y/3 = z/4 va x + y + z =18.

Áp dụng tính chất của dãy tỉ số bằng nhau:

x/2 = y/3 = z/4 = x+y+z/2+3+4 = 18 /9 =2

=> x= 2*2 =4

y= 2* 3=6 

z=2*4= 8

Vậy x=4; y=6; z=8.

b) x/5 = y/-6 = z/7 va x + y - z =32.

Áp dụng tính chất của dãy tỉ số bằng nhau:

x/5 = y/-6 =z/7 =x+y-z/ 5+(-6) -7 = 32/-8 =-4

=> x= -4 *5 = -20

y= -4* (-6)= 24

z= -4 * 7 = -28

Vậy x=-20 ; y= 24; x= -28.

c) x/5 = y/3 = z/2 va 2x + 3y + 4z =54.

x/5 = 2x/10

y/3 = 3y/9 

z/2 = 4z/8 

Áp dụng tính chất của dãy tỉ số bằng nhau:

2x/10 = 3y/9 = 4x/8 = 2x+3y+4z/10+9+8 = 54/27= 2

=> x= 2*5 = 10

y= 2*3 =6

x= 2*2 =4

Vậy x= 10; y=6; z=4

d) x/2 = y/3 = z/6 va 3x - 2y + 2z = 24.

x/2 =3x/6

y/3 = 2y/6

z/6 = 2z/12 

Áp dụng tính chất của dãy tỉ số bằng nhau:

3x/6 = 2y/6 = 2z/12 = 3x- 2y +2z/6-6+12 = 24/12 =2

=> x= 2*2 =4

y= 2*3 =6

z= 2* 6 =12

Vậy x=4; y=6; z=12

24 tháng 8 2017

mk ko biết bởi vì mk mới hok lp 7 thui

24 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

20 tháng 9 2018

Đặt y+z-x=a

      x+z-y=b

      x+y-z=c

Ta thấy a+b+c=y+z-x+x+z-y+x+y-z=x+y+z

Ta có: \(P=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+c^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2-a^3-b^3-c^3\)

\(=3a^2b+3ab^2+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)

\(=3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

\(=3\cdot2z\cdot2y\cdot2x\)

\(=24xyz⋮24\)

Vậy P chia hết cho 24

26 tháng 7 2016

12

24

36

48

60'72

84

96

108

120

12

24

36

48

60

72

84

96

208

120

132144

156

168

180

20 tháng 12 2016

Một bài toán "lừa" người ta:

Đặt \(a=x-y,b=y-z,c=z-x\Rightarrow a+b+c=0\).

Ta có hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).

Trong trường hợp này thì \(a+b+c=0\) nên suy ra đpcm.

4 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng ngau ta có :

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{x+y+z}{y+z+t}\)

\(\Rightarrow\dfrac{x.y.z}{y.z.t}=(\dfrac{x+y+z}{y+z+t})^3\)

\(\Rightarrow\dfrac{x}{t}=(\dfrac{x+y+z}{y+z+t})^3\)

\(\Rightarrowđpcm\)

xét hiệu x3+y3+z3-3xyz

=(x+y)3+z3-3xy(x+y)-3xyz

=(x+y+z)3-3(x+y+z)(x+y)z-3xy(x+y+z)

=0       vì x+y+z=0

=>x3+y3+z3=3xyz

=>đpcm

12 tháng 1 2020

Với x,y,z dương, áp dụng BĐT AM-GM:

\(\left\{{}\begin{matrix}x^3+x^3+y^3\ge3x^2y\\x^3+y^3+y^3\ge3xy^2\end{matrix}\right.\) \(\Rightarrow3\left(x^3+y^3\right)\ge3\left(x^2y+xy^2\right)\)

Tương tự:\(3\left(y^3+z^3\right)\ge3\left(y^2z+yz^2\right)\);\(3\left(x^3+z^3\right)\ge3\left(x^2z+xz^2\right)\)

Cộng vế theo vế:

\(\Leftrightarrow6\left(x^3+y^3+z^3\right)\ge3\left(x^2y+xy^2\right)+3\left(y^2z+yz^2\right)+3\left(x^2z+xz^2\right)\)

\(\Leftrightarrow8\left(x^3+y^3+z^3\right)\ge x^3+y^3+3xy\left(x+y\right)+y^3+z^3+3yz\left(y+z\right)+x^3+z^3+3xz\left(x+z\right)\) \(\Leftrightarrow8\left(x^3+y^3+z^3\right)\ge\left(x+y\right)^3+\left(y+z\right)^3+\left(x+z\right)^3\) (đpcm)