K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2021

Tự vẽ hình nhé!

\(AB=AC\Rightarrow\Delta ABC\) cân tại A

Ta có: \(\Delta OAC=\Delta OAB\left(c-c-c\right)\) \(\Rightarrow\widehat{A_1}=\widehat{A_2}\)

Xét \(\Delta ACI,\Delta ABI\) có:

\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)

\(AB=AC\left(gt\right)\)

AI cạnh chung

\(\Rightarrow\Delta ACI=\Delta ABI\left(c-g-c\right)\) \(\Rightarrow IC=IB\)

\(\Rightarrow AI\) là trung tuyến của \(\Delta ABC\)

Mặt khác: OI cũng là trung tuyến \(\Delta ABC\) ( do xét trong \(\Delta OCB\))

\(\Rightarrow A,O,I\) thẳng hàng

Mà: \(AI\perp BC\) ( vì \(\Delta ABC\) có AI trung tuyến)

\(\Rightarrow OA\perp BC\)

undefined

 

Cách khác:

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AB=AC(gt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA\(\perp\)BC(Đpcm)

14 tháng 8 2018

a) Đúng;

b) Sai;

c) Sai;

1: góc AMO+góc ANO=180 độ

=>AMON nội tiếp

2: ΔOAB cân tại O

mà OM là đường cao

nên M là trung điểm của AB

ΔOAC cân tại O

mà ON là đường cao

nên N là trung điểm của AC

=>NM là đừog trung bình

=>MN//BC

=>MN//AE

=>AMNE là hình thang cân

=>AM=EN; AN=EM

ΔAHB vuông tại H có HM là trung tuyến

nên HM=AB/2=MA=MB

ΔHAC vuông tại H có HN là trung tuyến

nên HN=AN=CN=AC/2

=>HM=EN; HN=EM

=>HMEN là hình bbình hành

=>K làtrung điểm của MN

=>IK vuông góc MN

=>IK vuông góc BC

3: goc MDE+gó MDH=180 độ

=>góc MDE=góc MBH

=>BMDH nội tiếp

=>góc MDB=góc MHB=góc MBH

=>góc MDB=góc MDE

=>DM là phân giác của góc BDE

1: góc AMO+góc ANO=180 độ

=>AMON nội tiếp

2: Gọi giao EO và BC là P

AE//BC

AE vuông góc OE

=>OE vuông góc BC

=>OP vuông góc BC

=>P là trung điểm của BC

AEPH là hình chữ nhật

=>AE=PH

EJ giao BC=J

=>AE=JC

=>JC=HP

=>HJ=PC=BC/2=MN

=>HMNJ là hình bình hành

=>HM//NJ và HM=NJ

=>HM//EN và HM=EN

=>EMHN là hbh

=>K là trung điểm của MN

=>IK vuông góc MN

=>IK vuông góc BC

a: Đúng

b: Đúng

c: Đúng

a) Xét tứ giác DFEC có

\(\widehat{DFC}=\widehat{DEC}\left(=90^0\right)\)

\(\widehat{DFC}\) và \(\widehat{DEC}\) là hai góc cùng nhìn cạnh DE

Do đó: DFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b: Xét (O) có 

OH là một phần đường kính

AD là dây

OH\(\perp\)AD tại H

Do đó: H là trung điểm của AD

Suy ra: \(AH\cdot HD=AH^2\left(1\right)\)

Xét (O) có

ΔBAC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBAC vuông tại A

Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot HC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot HD=HB\cdot HC\)

23 tháng 1 2020

1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)

 ~~~~~~~~~ Bài làm ~~~~~~~~~

A B C O I K H Q D

Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))

\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)

Ta lại có: \(BD\perp HK\)

\(\Rightarrow BD\) là đường trung trực của \(HK\)

\(\Rightarrow\Delta IHK\) cân tại \(I\)

\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)

Lại có:\(\widehat{DKO}=\widehat{HAO}\)\(\Delta OKA\) cân tại \(O\))

Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)

\(\Rightarrow\widehat{KIO}=90^0\)

\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)

(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )

24 tháng 1 2020

Ủa bạn ơi sao phụ nhau? Dòng đầu ấy

16 tháng 3 2018

kẻ đường kính AA' của đường tròn tâm O

Xét đường tròn tâm O có góc ABC=AA'C ( cùng chắn cung AC) (1)

Có tứ giác BEFC nội tiếp đường tròn đường kính BC 

=> góc ABC=AFE ( cùng bù với góc EFC ) (2)

từ (1) và (2) => góc AFE = AA'C

Gọi giao điểm của OA và EF là H

Xét tam giác AHF và ACA'

có góc A'AC chung

góc AFE=AA'C (cmt)

=> tam giác AHF đồng dạng ACA'

=> góc AHF = ACA'

mà góc ACA' = 90 độ ( góc nt chắn nửa đg tròn )

=> góc AHF = 90 độ

=> OA vuông góc EF