Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
ΔDBC nội tiếp đường tròn(D,B,C∈(O))
BC là đường kính(gt)
Do đó: ΔDBC vuông tại D(Định lí)
⇒CD⊥BD tại D
⇒CD⊥AB tại D
⇒HD⊥AD tại D
Xét ΔADH có HD⊥AD tại D(cmt)
nên ΔADH vuông tại D(Định nghĩa tam giác vuông)
Ta có: ΔADH vuông tại D(cmt)
mà DI là đường trung tuyến ứng với cạnh huyền AH(I là trung điểm của AH)
nên \(DI=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)
Xét (O) có
ΔBEC nội tiếp đường tròn(B,E,C∈(O))
BC là đường kính(gt)
Do đó: ΔBEC vuông tại E(Định lí)
⇒BE⊥CE tại E
⇒BE⊥AC tại E
⇒HE⊥AE tại E
Xét ΔAEH có AE⊥EH tại E(cmt)
nên ΔAEH vuông tại E(Định nghĩa tam giác vuông)
Ta có: ΔAEH vuông tại E(cmt)
mà EI là đường trung tuyến ứng với cạnh huyền AH(I là trung điểm của AH)
nên \(EI=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)
Từ (1) và (2) suy ra ID=IE
hay I nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: OD=OE(=R)
nên O nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(4)
Từ (3) và (4) suy ra OI là đường trung trực của DE
hay OI⊥DE(đpcm)
đề bài : Cho tam giác MAB vuông tại H ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng
đúng hog
1. Vì BD, BF là các tiếp tuyến của (O) nên OD ⊥ BD, OF ⊥ BF.
Xét 2 tam giác vuông OBD và OBF có
O B chung OBD=OBF(gt) = > Δ O B D = Δ O B F (cạnh huyền–góc nhọn)
⇒ BD = BF
Mà OD = OF = r nên OB là trung trực của DF ⇒ OB ⊥ DF ⇒ ∆ KIF vuông tại K.
Mà OD = OF = r nên OB là trung trực của DF ⇒ OB ⊥ DF ⇒ ∆ KIF vuông tại K. D O E = 90 o
Theo quan hệ giữa góc nội tiếp và góc ở tâm cho đường tròn (O), ta có:
D F E = 1 2 D O E = 45 o
⇒ ∆ KIF vuông cân tại K.
=>BIF=45o
vì Đường tròn (O;R) có đường kính BC cắt AB, AC lần lượt là F và E => góc HEA = góc HFA = 90o
mà hai góc này là hai góc đối nhau=> tứ giác AFHE nội tiếp
kẻ đường kính AA' của đường tròn tâm O
Xét đường tròn tâm O có góc ABC=AA'C ( cùng chắn cung AC) (1)
Có tứ giác BEFC nội tiếp đường tròn đường kính BC
=> góc ABC=AFE ( cùng bù với góc EFC ) (2)
từ (1) và (2) => góc AFE = AA'C
Gọi giao điểm của OA và EF là H
Xét tam giác AHF và ACA'
có góc A'AC chung
góc AFE=AA'C (cmt)
=> tam giác AHF đồng dạng ACA'
=> góc AHF = ACA'
mà góc ACA' = 90 độ ( góc nt chắn nửa đg tròn )
=> góc AHF = 90 độ
=> OA vuông góc EF