a) x+1/2=8/x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{1}{1.2.4}+\frac{1}{2.4.5}+...+\frac{1}{8.10.11}+\frac{1}{10.11.13}\)
3 x A = \(\frac{3}{1.2.4}+\frac{3}{2.4.5}+...+\frac{3}{8.10.11}+\frac{3}{10.11.13}\)
3 x A = \(\frac{1}{1.2}-\frac{1}{2.4}+\frac{1}{2.4}-\frac{1}{4.5}+...+\frac{1}{8.10}-\frac{1}{10.11}+\frac{1}{10.11}-\frac{1}{11.13}\)
3 x A = \(\frac{1}{1.2}-\frac{1}{11.13}=\frac{1}{2}-\frac{1}{143}=\frac{143}{286}-\frac{2}{286}=\frac{141}{286}\)
A = \(\frac{141}{286}:3=\frac{141}{286.3}=\frac{47}{286}\)
a) \(\left(x+8\right)^2-2\left(x+8\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left[\left(x+8\right)-\left(x-2\right)\right]^2\)
\(=\left(x+8-x+2\right)^2\)
\(=10^2\)
\(=100\)
Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)
\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)
Dấu "=" \(x=y=\dfrac{1}{2}\)
5: \(\Leftrightarrow9\left(x^2-5x-4\right)=36\left(x+1\right)+8\left(x^2-10x\right)\)
\(\Leftrightarrow9x^2-45x-36-36x-36-8x^2+80x=0\)
\(\Leftrightarrow x^2-x-72=0\)
=>(x-9)(x+8)=0
=>x=9 hoặc x=-8
6: \(\Leftrightarrow x^2-9=9x-x^2-9+x\)
\(\Leftrightarrow2x^2-10x=0\)
=>2x(x-5)=0
=>x=0 hoặc x=5
5, <=> 9x^2 - 45x - 36 = 36x + 36 + 8x^2 - 80x
<=> x^2 - x - 72 = 0 <=> x = 9 ; x = -8
6, <=> x^2 - 9 = 9x - x^2 - 9 + x = 10x - x^2 - 9
<=> 2x^2 - 10x = 0 <=> x = 0 ; x = 5
7, <=> (x-1)^2 = (3x+3)^2
<=> (x-1-3x-3)(x-1+3x+3) = 0
<=> (-2x-4)(4x+2) = 0 <=> x = -2;x=-1/2
8, = (x^2-10x-15)(x^2-10x+25)
Answer:
\(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^2-1}\) \(ĐK:x\ne1\)
\(\Rightarrow1\left(x^2+x+1\right)+2\left(x-1\right)=3x^2\)
\(\Rightarrow x^2+x+1+2x-2=3x^2\)
\(\Rightarrow x^2+3x-3=3x^2\)
\(\Rightarrow2x^2-3x+1=0\)
\(\Rightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=1\text{(loại)}\end{cases}}\)
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\) \(ĐK:x\ne-1;x\ne3\)
\(\Rightarrow\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}=\frac{4x}{2\left(x-3\right)\left(x+1\right)}\)
\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)=4x\)
\(\Rightarrow x^2+x+x^2-3x=4x\)
\(\Rightarrow2x^2-6x=0\)
\(\Rightarrow2x\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=3\text{(loại)}\end{cases}}}\)
\(\frac{8-x}{x-7}-8=\frac{1}{x-7}\)
\(\Rightarrow\frac{8-x}{x-7}-\frac{1}{x-7}=8\)
\(\Rightarrow\frac{7-x}{x-7}=8\)
\(\Rightarrow-1=8\)
Vậy phương trình vô nghiệm
1)
=a^4+2a^2+1-a^2
=(a^2+1)^2-a^2
=(a^2-a+1)(a^2+a+1)
2)
=a^4+4b^4-4a^2b^2
=(a^2+2b^2)^2-4a^2b^2
=(a^2-2ab+2b^2)(a^2+2ab+2b^2)
3)
=(8x^2+1)^2-16x^2
=(8x^2-4x+1)(8x^2+4x+1).
4)
=x^5+x^4+x^3-x^3+1
=x^2(x^2+x+1)-(x-1)(x^2+x+1)
=(x^2-x+1)(x^2+x+1)
5).
=x^7-x+x^2+x+1
=x(x^6-1)+x^2+x+1
=x(x^3-1)(x^3+1)+x^2+x+1
=x(x-1)(x^2+x+1)(x^3+1)+x^2+x+1
=(x^2+x+1)[(x^2-x)(x^3+1)+1]
6)
=x^8-x^2+x^2+x+1
=x^2(x-1)(x^2+x+1)(x^3+1)+x^2+x+1
Xong nhóm x^2+x+1 vào.
7)
=x^4-(2x-1)^2
=(x^2-2x+1)(x^2+2x-1)
8)
=(a^8+b^8)^2-a^8b^8
=(a^8-a^4b^4+b^8)(a^8+a^4b^4+b^8).
\(\dfrac{2x+1}{2}=\dfrac{8+x}{x}\)
x (2x +1) = 2 (8 +x)
2x2 + x = 16 + 2x
2x2 -x - 16 = 0
=> \(x=\dfrac{\sqrt{129}+1}{4}\)
\(x=\dfrac{-\sqrt{129}+1}{4}\)