Giải hệ:\(\hept{\begin{cases}x^3+y^3-xy^2=1\\4x^4+y^4=4x+y\end{cases}}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
HN
1
LQ
0
DT
0
XO
10 tháng 2 2022
b) \(\hept{\begin{cases}x^2-4x+3=0\left(1\right)\\x^2+xy+y^2=3\left(2\right)\end{cases}}\)
Từ (1) <=> (x - 1)(x - 3) = 0 \(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Với x = 3 => (2) <=> 32 + 3y + y2 = 3
<=> y2 + 3y + 6 = 0
<=> \(\left(2y+3\right)^2=-15\)<=> PT vô nghiệm
Với x = 3 => (1) <=> 12 + y + y2 = 3
<=> (y - 1)(y + 2) = 0
<=> \(\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)
=> Hệ có 2 nghiệm (x ; y) = (1;1) ; (1 ; - 2)