Giúp mình bài này với mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong mp (SAB), từ M kẻ \(MP\perp SB\)
Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp MP\)
\(\Rightarrow MP\perp\left(SBC\right)\Rightarrow MP\in\left(\alpha\right)\)
Trong mp (SBC), qua P kẻ đường thẳng song song MN cắt SC tại Q
\(\Rightarrow NMPQ\) là thiết diện của \(\left(\alpha\right)\) và chóp
\(MN||BC\) (đường trung bình), mà \(BC\perp\left(SAB\right)\Rightarrow MN\perp\left(SAB\right)\Rightarrow MN\perp MP\)
\(\Rightarrow\) Thiết diện là hình thang vuông tại M và P
Từ A kẻ \(AH\perp SB\Rightarrow\) MP là đường trung bình tam giác ABH \(\Rightarrow MP=\dfrac{1}{2}AH\)
Tam giác SAB vuông cân tại A \(\Rightarrow AH=\dfrac{1}{2}SB=\dfrac{1}{2}\sqrt{SA^2+AB^2}=\dfrac{a\sqrt{2}}{2}\Rightarrow MP=\dfrac{a\sqrt{2}}{4}\)
\(MN=\dfrac{BC}{2}=\dfrac{a}{2}\)
\(\dfrac{BP}{BH}=\dfrac{MP}{AH}=\dfrac{1}{2}\Rightarrow BP=\dfrac{1}{2}BH=\dfrac{1}{4}SB\Rightarrow SP=\dfrac{3}{4}SB\)
Talet: \(\dfrac{PQ}{BC}=\dfrac{SP}{SB}=\dfrac{3}{4}\Rightarrow PQ=\dfrac{3}{4}BC=\dfrac{3a}{4}\)
\(S_{NMPQ}=\dfrac{1}{2}MP.\left(MN+PQ\right)=...\)
Bán kính hình tròn:
18 : 2 = 9 (cm)
Diện tích hình tròn:
3,14 × 9 × 9 = 254,34 (cm²)
Diện tích hình vuông:
4 × 9 × 9 : 2 = 162 (cm²)
Diện tích phần gạch chéo:
254,34 - 162 = 92,34 (cm²)
R=18/2=9cm
=>a=9*2=18cm
\(S_1=18^2=324\left(cm^2\right)\)
\(S_2=9^2\cdot3.14=254.34\left(cm^2\right)\)
Diện tích phần gạch chéo là:
324-254,34=69,66cm2
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{EAF}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=EF
Lời giải:
a.
Tam giác $ABC$ vuông tại $B$ nên $\widehat{ABC}=90^0$
Xét tam giác $ABC$ có:
$\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0$ (tổng 3 góc trong 1 tam giác)
$\Rightarrow 90^0+30^0+\widehat{BAC}=180^0$
$\Rightarrow \widehat{BAC}=60^0$
b.
Xét tam giác $BAD$ và $EAD$ có:
$AD$ chung
$\widehat{BAD}=\widehat{EAD}$ (do $AD$ là phân giác $\widehat{A}$)
$\widehat{ABD}=\widehat{AED}=90^0$
$\Rightarrow \triangle BAD=\triangle EAD$ (ch-gn)
c.
Từ tam giác bằng nhau phần b suy ra $AB=AE$
$\Rightarrow ABE$ cân tại $A$
$\Rightarrow \widehat{ABE}=\widehat{AEB}$
Mà $\widehat{BAE}=60^0$ (kết quả phần a) nên:
$\widehat{ABE}=\widehat{AEB}=(180^0-\widehat{BAE}):2=(180^0-60^0):2=60^0$
Vậy $\widehat{ABE}=\widehat{AEB}=\widehat{BAE}=60^0$ nên $ABE$ là tam giác đều.
Hình vẽ: