Cho tam giác ABC vuông tại A ( AB < AC ). Tia phân giác của góc A cắt BC tại D . Qua D kẻ đường tjawngr vuông góc với BC , cắt AC tại E . Trên AB lấy điẻm F sao cho AF = AE . Chứng minh
a) góc B = góc DEC
b) tam giác DBF là tam giác cân
c) DB = DE
a: Ta có: \(\widehat{C}+\widehat{DEC}=90^0\)
\(\widehat{C}+\widehat{B}=90^0\)
Do đó: \(\widehat{DEC}=\widehat{B}\)
b: Xét ΔAFD và ΔAED có
AF=AE
\(\widehat{FAD}=\widehat{EAD}\)
AD chung
Do đó: ΔAFD=ΔAED
=>\(\widehat{AFD}=\widehat{AED}\)
mà \(\widehat{AFD}+\widehat{DFB}=180^0\)(hai góc kề bù)
và \(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)
nên \(\widehat{DFB}=\widehat{CED}\)
=>\(\widehat{DFB}=\widehat{DBF}\)
=>ΔDBF cân tại D
c: Ta có: ΔAFD=ΔAED
=>DF=DE
mà DF=DB
nên DE=DB