tìm nghiệm của các đa thức sau:
A)(2x-4)*(x+9)
B)(x+1)(x-1)(3-2x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1
a, P(x)=\(5x^2-2x^4+2x^3+3\)
\(P\left(x\right)=-2x^4+2x^3+5x^2+3\)
\(Q\left(x\right)=2x^4-5x^2-x+1-2x^3\)
\(Q\left(x\right)=2x^4-2x^3-5x^2-x+1\)
b, Ta có A(x)=P(x)+Q(x)
thay số A(x)=\(\left(-2x^4+2x^3+5x^2+3\right)+\left(2x^4-2x^3-5x^2-x+1\right)\)
=\(-2x^4+2x^3+5x^2+3+2x^4-2x^3-5x^2-x+1\)
\(=-x+4\)
c, A(x)=0 khi
\(-x+4=0\)
\(x=4\)
vậy no của đa thức là 4
câu 2
tự vẽ hình nhé
a, xét \(\Delta\) ABC cân tại A có AD là pg
=> AD vừa là dg cao vừa là đg trung tuyến ( t/c trong tam giác cân )
xét \(\Delta\) ADB vg tại D ( áp dụng định lí Py ta go trong tam giác vg ) có
\(AB^2=BD^2+AD^2\\ \Rightarrow BD^2=9\Rightarrow BD=3\)
Ta có D là trung đm của BC ( AD là đg trung tuyến ứng vs BC)
=> BD=CD=\(\dfrac{1}{2}BC\)
=> BC= 6cm
câu b đang nghĩ
Trình bày đề bài cho dễ nhìn bạn eyy :v
Khó nhìn như này thì God cũng chịu -.-
Xét A(x)=2x-1=0
=>2x=1
x=1/2
Vậy x=1/2 là nghiệm của đa thức A(x)
Xét B(x)=x2-2x=0
=>x(x-2)=0
=>x=0 hoặc x=2
Vậy x=0;2 là nghiệm của đa thức B(x)
Xét C(x)=|x|-1=0
=>|x|=1=>x=1;-1
Vậy x=1;-1 là nghiệm của đa thức C(x)
Xét D(x)=x2-9=0
x2=9
x=-3;3
Vậy x=3;-3 là nghiệm của đa thức D(x)
A(x) = 2x-1
2x - 1 = 0
2x = 0 + 1
2x = 1
x = 1 : 2
x = 1/2
3) tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2
\(\Rightarrow M\left(x\right)=x^2-mx+2\)
\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)
\(\Leftrightarrow1-m\left(-1\right)=-2\)
\(\Leftrightarrow m\left(-1\right)=3\)
\(\Leftrightarrow m=-3\)
vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)
4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)
\(\Leftrightarrow K\left(2\right)=a+b=3\)
\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)
\(\Leftrightarrow a+\left(-b\right)+c2=5\)
ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
vậy \(a=1;b=2;c=3\)
1. a) Sắp xếp :
f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9
g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9
b) h(x) = f(x) + g(x)
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9
= ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )
= 3x2- 3x
c) h(x) có nghiệm <=> 3x2 - 3x = 0
<=> 3x( x - 1 ) = 0
<=> 3x = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 1
Vậy nghiệm của h(x) là x= 0 hoặc x = 1
2. D(x) = A(x) + B(x) - C(x)
= 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )
= 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2
= ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 )
= 9x3
b) D(x) có nghiệm <=> 9x3 = 0 => x = 0
Vậy nghiệm của D(x) là x = 0
3. M(x) = x2 - mx + 2
x = -1 là nghiệm của M(x)
=> M(-1) = (-1)2 - m(-1) + 2 = 0
=> 1 + m + 2 = 0
=> 3 + m = 0
=> m = -3
Vậy với m = -3 , M(x) có nghiệm x = -1
4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )
K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1
=> a + 0b + c.0.(-1) = 1
=> a + 0 = 1
=> a = 1
K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3
=> 1 + 1b + c.1.0 = 3
=> 1 + b + 0 = 3
=> b + 1 = 3
=> b = 2
K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5
=> 1 + 5(-1) + c(-1)(-2) = 5
=> 1 - 5 + 2c = 5
=> 2c - 4 = 5
=> 2c = 9
=> c = 9/2
Vậy a = 1 ; b = 2 ; c = 9/2
`@` `\text {Ans}`
`\downarrow`
`4,`
`a)`
\(f(x)=x(1-2x) + (2x^2 -x +4 )=0\)
`=> x-2x^2 + 2x^2-x+4=0`
`=> (x-x)+(-2x^2+2x^2)+4=0`
`=> 4=0 (\text {vô lí})`
Vậy, đa thức không có nghiệm.
`b)`
\(g(x) = x(x-5) - x(x+2)+ 7x=0\)
`=> x^2-5x-x^2-2x+7x=0`
`=> (x^2-x^2)+(-5x-2x+7x)=0`
`=> 0=0 (\text {luôn đúng})`
Vậy, đa thức có vô số nghiệm.
`c)`
\(h(x)= x(x-1) +1=0\)
`=> x^2-x+1=0`
Vì \(x^2 \ge 0\) \(\forall\) `x`
`=> x^2 - x + 1 \ge 1`\(\forall x\)
`1 \ne 0`
`=>` Đa thức vô nghiệm.
`\text {#KaizuulvG}`
a/\(x^2+9=0\)
\(\Rightarrow x^2=-9\)(Vô lí vì \(x^2\ge0\))
Do đó A(x) vô nghiệm
b/\(x^2-9=0\)
\(\Rightarrow x^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy nghiệm của B(x) là \(x\in\left\{3;-3\right\}\)
c/\(2x^2-2=0\)
\(\Rightarrow2x^2=2\)
\(\Rightarrow x^2=1\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy nghiệm của C(x) là \(x\in\left\{1;-1\right\}\)
d/\(3x-6=0\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Vậy nghiệm của D(x) là \(x=2\)
a: A(x)=0
=>x^2=-9(loại)
b: x^2-9=0
=>x^2=9
=>x=3 hoặc x=-3
c:2x^2-2=0
=>x^2-1=0
=>x=1 hoặc x=-1
d: 3x-6=0
=>3x=6
=>x=2
a; (2\(x-4\)).(\(x+9\)) = 0
\(\left[{}\begin{matrix}2x-4=0\\x+9=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=4\\x=-9\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2\\x=-9\end{matrix}\right.\)
Vậy \(x\) {-9; 2}
b; (\(x\) + 1).(\(x-1\)).(3 - 2\(x\)) = 0
\(\left[{}\begin{matrix}x+1=0\\x-1=0\\3-2x=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-1\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-1; 1; \(\dfrac{3}{2}\)}