K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4

a) Xét hai tam giác vuông: \(\Delta BHK\) và \(\Delta CHI\) có:

\(\widehat{BHK}=\widehat{CHI}\) (đối đỉnh)

\(\Rightarrow\Delta BHK\) ∽ \(\Delta CHI\left(g-g\right)\)

b) Do \(BH\) là tia phân giác của \(\widehat{KBC}\) (gt)

\(\Rightarrow\widehat{KBH}=\widehat{CBH}\)

\(\Rightarrow\widehat{KBH}=\widehat{CBI}\) (1)

Do \(\Delta BHK\) ∽ \(\Delta CHI\left(cmt\right)\)

\(\Rightarrow\widehat{KBH}=\widehat{ICH}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{ICH}=\widehat{CBI}\)

Xét hai tam giác vuông: \(\Delta CIB\) và \(\Delta HIC\) có:

\(\widehat{CBI}=\widehat{ICH}\left(cmt\right)\)

\(\Rightarrow\Delta CIB\) ∽ \(\Delta HIC\left(g-g\right)\)

\(\Rightarrow\dfrac{CI}{IH}=\dfrac{IB}{CI}\)

\(\Rightarrow CI^2=IH.IB\)

c) Do \(CI\perp BH\) tại \(I\) (gt)

\(\Rightarrow BI\perp AC\)

\(\Rightarrow BI\) là đường cao của \(\Delta ABC\)

Lại có:

\(CK\perp KB\left(gt\right)\)

\(\Rightarrow CK\perp AB\)

\(\Rightarrow CK\) là đường cao thứ hai của \(\Delta ABC\)

Mà H là giao điểm của \(BI\) và \(CK\) (gt)

\(\Rightarrow AH\) là đường cao thứ ba của \(\Delta ABC\)

\(\Rightarrow AD\perp BC\)

Xét hai tam giác vuông: \(\Delta BKH\) và \(\Delta BDH\) có:

\(BH\) là cạnh chung

\(\widehat{KBH}=\widehat{DBH}\) (do BH là tia phân giác của \(\widehat{B}\))

\(\Rightarrow\Delta BKH=\Delta BDH\) (cạnh huyền - góc nhọn)

\(\Rightarrow BK=BD\) (hai cạnh tương ứng)

\(\Rightarrow B\) nằm trên đường trung trực của DK (3)

Do \(\Delta BKH=\Delta BDH\left(cmt\right)\)

\(\Rightarrow HK=HD\) (hai cạnh tương ứng)

\(\Rightarrow H\) nằm trên đường trung trực của DK (4)

Từ (3) và (4) \(\Rightarrow BH\) là đường trung trực của DK

\(\Rightarrow\widehat{DKH}+\widehat{BHK}=90^0\)

Mà \(\widehat{BHK}=\widehat{CHI}\) (cmt)

\(\Rightarrow\widehat{DKH}+\widehat{CHI}=90^0\) (*)

\(\Delta ABC\) có:

\(BH\) là đường phân giác (cmt)

\(BH\) cũng là đường cao (cmt)

\(\Rightarrow\Delta ABC\) cân tại B

\(\Rightarrow BH\) là đường trung trực của \(\Delta ABC\)

\(\Rightarrow I\) là trung điểm của AC

\(\Rightarrow KI\) là đường trung tuyến của \(\Delta AKC\)

\(\Delta AKC\) vuông tại K có KI là đường trung tuyến ứng với cạnh huyền AC

\(\Rightarrow KI=IC=IA=\dfrac{AC}{2}\)

\(\Rightarrow\Delta IKC\) cân tại \(I\)

\(\Rightarrow\widehat{IKC}=\widehat{ICK}\)

\(\Rightarrow\widehat{IKH}=\widehat{ICH}\)

Mà \(\widehat{ICH}+\widehat{CHI}=90^0\)

\(\Rightarrow\widehat{IKH}+\widehat{CHI}=90^0\) (**)

Từ (*) và (**) \(\Rightarrow\widehat{IKH}=\widehat{DKH}\)

\(\Rightarrow KH\) là tia phân giác của \(\widehat{IKD}\)

Hay \(KC\) là tia phân giác của \(\widehat{IKD}\)

21 tháng 5
 

loading...

a) Vì tam giác 𝐾𝐵𝐶 vuông tại 𝐾 suy ra 𝐾𝐵𝐻^=90∘

Vì 𝐶𝐼⊥𝐵𝐼 (gt) suy ra 𝐶𝑙𝐻^=90∘

Xét △𝐾𝐵𝐻 và △𝐶𝐻𝐼 có:

𝐾𝐵𝐻^=𝐶𝐼𝐻^=90∘;

𝐵𝐻𝐾^=𝐶𝐻𝐼^ (đối đỉnh)

Suy ra Δ𝐵𝐻𝐾∽Δ𝐶𝐻𝐼 (g.g)

b) Ta có Δ𝐵𝐻𝐾∽Δ𝐶𝐻𝐼 suy ra 𝐻𝐵𝐾^=𝐻𝐶𝐼^ (hai góc tương ứng) 

Mà 𝐵𝐻 là tia phân giác của 𝐴𝐵𝐶^ nên 𝐻𝐵𝐾^=𝐻𝐵𝐶^.

Do đó 𝐻𝐵𝐶^=𝐻𝐶𝐼^.

Xét △𝐶𝐼𝐵 và △𝐻𝐼𝐶 có:

𝐶𝐼𝐵^ chung;

𝐼𝐵𝐶^=𝐻𝐶𝐼^ (cmt)

Vậy Δ𝐶𝐼𝐵≈Δ𝐻𝐼𝐶 (g.g) suy ra 𝐶𝐼𝐻𝐼=𝐼𝐵𝐼𝐶

Hay 𝐶𝐼2=𝐻𝐼.𝐼𝐵

c) Xét △𝐴𝐵𝐶 có 𝐵𝐼⊥𝐴𝐶𝐶𝐾⊥𝐴𝐵𝐵𝐼∩𝐶𝐾={𝐻}

Nên 𝐻 là trực tâm △𝐴𝐵𝐶 suy ra 𝐴𝐻⊥𝐵𝐶 tại 𝐷.

Từ đó ta có △𝐵𝐾𝐶∽△𝐻𝐷𝐶 (g.g) nên 𝐶𝐵𝐶𝐻=𝐶𝐾𝐶𝐷

Suy ra 𝐶𝐵𝐶𝐾=𝐶𝐻𝐶𝐷 nên △𝐵𝐻𝐶∽△𝐾𝐷𝐶 (c.g.c)

Khi đó 𝐻𝐵𝐶^=𝐷𝐾𝐶^ (hai góc tương ứng)

Chứng minh tương tự 𝐻𝐴𝐶^=𝐼𝐾𝐶^

Mà 𝐻𝐴𝐶^=𝐻𝐵𝐶^ (cùng phụ 𝐴𝐶𝐵^ )

Suy ra  𝐷𝐾𝐶^=𝐼𝐾𝐶^.

Vậy 𝐾𝐶 là tia phân giác của 𝐼𝐾𝐷^.

11 tháng 4 2020

không biết

a: Xét ΔAEC vuông tại E và ΔAHB vuông tại H có

góc EAC chung

=>ΔAEC đồng dạng với ΔAHB

=>AE/AH=AC/AB

=>AE*AB=AC*AH

b: Xét ΔCBH vuông tại H và ΔACF vuông tại F có

góc BCH=góc CAF

=>ΔCBH đồng dạng với ΔACF

 

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
7 tháng 5 2020

eo biet vi lop 5

7 tháng 5 2020

mik ko biết

a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)

Suy ra: BA=BH(hai cạnh tương ứng)

30 tháng 3 2017

aipits ko, chỉ giúp mh cau c, nhé mn