mn giải hộ bài này=(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\ge0;x\ne1\\ 1,P=\dfrac{x-2\sqrt{x}+1-x-\sqrt{x}+5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2}{\sqrt{x}-1}\\ 2,P< 0\Leftrightarrow\sqrt{x}-1< 0\left(2>0\right)\\ \Leftrightarrow\sqrt{x}< 1\Leftrightarrow0\le x< 1\)
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}a\cdot0+b=-2\\-3a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=-2\end{matrix}\right.\)
\(1,ĐK:x^2-1\ge0\Leftrightarrow\left(x-1\right)\left(x+1\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\\ 2,ĐK:x\ge2\\ 3,ĐK:\left(x-1\right)\left(x-3\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le1\\x\ge3\end{matrix}\right.\\ 4,ĐK:x^2-4x-3\ge0\\ \Leftrightarrow\left(x-2+\sqrt{7}\right)\left(x-2-\sqrt{7}\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}x\le2-\sqrt{7}\\x\ge2+\sqrt{7}\end{matrix}\right.\)
Em tách nhỏ ra rồi hỏi nhe!! VD như 1 bài hỏi 1 lần á
3) Ta có: \(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}-\dfrac{3\sqrt{5}}{4}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{2\left(\sqrt{2}+\sqrt{3}\right)}-\dfrac{3\sqrt{5}}{4}\)
\(=\dfrac{2\sqrt{5}-3\sqrt{5}}{4}\)
\(=\dfrac{-\sqrt{5}}{4}\)
Bài 5:
CTPT: CxHyO
\(n_{CaCO_3}=\dfrac{40}{100}=0,4\left(mol\right)\)
PTHH: 2CxHyO + \(\dfrac{4x+y-2}{2}\)O2 --to--> 2xCO2 + yH2O
\(\dfrac{0,4}{x}\)<--\(\dfrac{0,4\left(4x+y-2\right)}{4x}\)<------0,4
Ca(OH)2 + CO2 --> CaCO3 + H2O
0,4<-----0,4
=> \(M_{C_xH_yO}=\dfrac{7,4}{\dfrac{0,4}{x}}=18,5x\left(g/mol\right)\)
=> y + 16 = 6,5x (1)
Có \(n_{O_2}=\dfrac{19,2}{32}=0,6\left(mol\right)\)
=> \(\dfrac{0,4\left(4x+y-2\right)}{4x}=0,6\)
=> 0,8x = 0,4y - 0,8 (2)
(1)(2) => x = 4; y = 10
CTPT: C4H10O
1) Ta có: \(\dfrac{1}{\sqrt{3}-1}+\dfrac{1}{4+2\sqrt{3}}-\dfrac{2}{\sqrt{3}}-\dfrac{3}{2}\)
\(=\dfrac{\sqrt{3}+1}{2}+\dfrac{2-\sqrt{3}}{2}-\dfrac{2\sqrt{3}}{3}-\dfrac{3}{2}\)
\(=\dfrac{\sqrt{3}+1+2-\sqrt{3}-3}{2}-\dfrac{2\sqrt{3}}{3}\)
\(=-\dfrac{2\sqrt{3}}{3}\)
3) Ta có: \(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}-\dfrac{3\sqrt{5}}{4}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{2\left(\sqrt{2}+\sqrt{3}\right)}-\dfrac{3\sqrt{5}}{4}\)
\(=\dfrac{2\sqrt{5}-3\sqrt{5}}{4}\)
\(=\dfrac{-\sqrt{5}}{4}\)
a.Xét tam giác vuông AED và tam giác vuông AFD, có:
A: góc chung
AD: cạnh chung
Vậy tam giác vuông AED = tam giác vuông AFD ( cạnh huyền . góc nhọn)
=> DE = DF ( 2 cạnh tương ứng )
b.Xét tam giác vuông BDE và tam giác vuông CDF, có:
góc B = góc C ( gt )
DE = DF ( cmt )
Vậy tam giác vuông BDE = tam giác vuông CDF ( góc nhọn. cạnh góc vuông )
c. ta có: AD là đường phân giác trong tam giác cân ABC cũng là đường trung trực
=> AD là đường trung trực của BC
Chúc bạn học tốt!!!
a) Do AB < AC (gt)
⇒ ∠C < ∠B (quan hệ giữa góc và cạnh đối diện trong tam giác)
b) Xét hai tam giác vuông: ∆ABM và ∆EBM có:
AB = BE (gt)
BM là cạnh chung
⇒ ∆ABM = ∆EBM (cạnh huyền - cạnh góc vuông)
c) Do ME ⊥ BC (gt)
⇒ NE ⊥ BC
⇒ NE là đường cao của ∆BCN
Do ∆ABC vuông tại A (gt)
⇒ CA ⊥ AB
⇒ CA ⊥ NB
⇒ CA là đường cao thứ hai của ∆BCN
Mà M là giao điểm của NE và CA
⇒ BM là đường cao thứ ba của ∆BCN
⇒ BM ⊥ NC