K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB và ΔAMC có 

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Xét tứ giác ANMC có 

I là trung điểm của AM

I là trung điểm của NC

Do đó: ANMC là hình bình hành

Suy ra: AN//MC

hay AN//BC

3 tháng 8 2016

Bài 2

gọi E là trung điểm của KB

Vì tam giác CKB có BM=MC ; BE=EK

=>EM//KC

Vì tam giác ENM có AN=AM ; KA//EM

=>EK=KN

Vì KN=KE=EB=>NK=1/2KB

27 tháng 7 2018

mình cũng có câu 3 giông thế

a: Xét ΔiAB và ΔICD có

IA=IC

góc AIB=góc CID

IB=ID

=>ΔIAB=ΔICD

b: Xét ΔBAC có

BI,AM là trung tuyến

BI cắt AM tại G

=>G là trọng tâm

=>BG=2/3BI=2/3ID

c: Xét ΔDAC có

DI,AN là trung tuyến

DI cắt AN tại K

=>K là trọng tâm

=>DK=2/3DI=2/3*1/2*DB=1/3DB

BG=2/3BI

=>BG=2/3*1/2BD=1/3BD

BG+GK+KD=BD

=>GK=1/3BD=DK=BG

6 tháng 9 2015

bạn vô đây coi bài nào thích hớp thì xem Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE a) Chứng minh rằng HK song song với DE b) Tính HK, biết chu vi tam giác ABC bằng 10 cm Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB... Xem thêm - Tìm với Google

30 tháng 4 2020

huy dep trai

6 tháng 1 2022

a/ 

Xét tg ABM và tg ACM có

AB=AC(gt); MB=MC(gt); AM chung => tg ABM = tg ACM (c.c.c)

b/

Ta có

AB=AC (gt) => tg ABC cân tại A

MB=MC (gt) => AM là trung tuyến của tg ABC

=> AM là phân giác của \(\widehat{BAC}\) (trong tg cân đường trung tuyến xp từ đỉnh đồng thời là đường phân giác của góc ở đỉnh)

c/

Xét tg ABM và tg NCM có

AM=MN (gt)MB=MC (gt)

\(\widehat{AMB}=\widehat{NMC}\)(góc đối đỉnh)

=> tg ABM = tg NCM (c.g.c) \(\Rightarrow\widehat{BAM}=\widehat{CNM}\)=> AB // CN (hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành 2 góc so le trong bằng nhau thì chúng // với nhau)

d/

Nối IK cắt BC tại M'

Ta có AB // CN => \(\widehat{IBM'}=\widehat{KCM'}\)(góc so le trong) và \(\widehat{BIM'}=\widehat{CKM'}\)(góc so le trong)

BI=CK (gt)

=> tg BIM' = tg CKM' (g.c.g) => M'B=M'C => M' là trung điểm của BC mà M cũng là trung điểm của BC (gt) => M trùng M'

=> I; M; K thẳng hàng