tìm x: 2-x/16 = -4/x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: \(\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)
\(=\left(x^2-4\right)\left(x^2+4\right)\)
\(=x^4-16\)
b: Ta có:\(\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)
\(=x^3+y^3\)
Bài 1:
Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x+1\right)\left(x+3\right)+3x^2=0\)
\(\Leftrightarrow x^3+64-x\left(x^2+4x+3\right)+3x^2=0\)
\(\Leftrightarrow x^3+64-x^3-4x^2-3x+3x^2=0\)
\(\Leftrightarrow-x^2-3x+64=0\)
\(\Leftrightarrow x^2+3x-64=0\)
\(\text{Δ}=3^2-4\cdot1\cdot\left(-64\right)=265\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{265}}{2}\\x_2=\dfrac{-3+\sqrt{265}}{2}\end{matrix}\right.\)
a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)
\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)
\(\Leftrightarrow24x=-13\)
hay \(x=-\dfrac{13}{24}\)
bài2 \(x\times\dfrac{15}{16}-x\times\dfrac{4}{16}=2\)
\(x\times\dfrac{11}{16}=2\)
\(x=2:\dfrac{11}{16}\)
\(x=\dfrac{32}{11}\)
Bài 1 :
\(\dfrac{x}{16}\times\left(2017-1\right)=2\)
\(\dfrac{x}{16}\times2016=2\)
\(\dfrac{x}{16}=\dfrac{2}{2016}\)
\(x=\dfrac{2}{2016}\times16\)
\(x=\dfrac{1}{63}\)
Lời giải:
a.
\(A=\frac{2(\sqrt{x}-4)-3(\sqrt{x}+4)}{(\sqrt{x}-4)(\sqrt{x}+4)}+\frac{2\sqrt{x}+16}{(\sqrt{x}-4)(\sqrt{x}+4)}=\frac{-\sqrt{x}-20}{(\sqrt{x}-4)(\sqrt{x}+4)}+\frac{2\sqrt{x}+16}{(\sqrt{x}-4)(\sqrt{x}+4)}\\ =\frac{\sqrt{x}-4}{(\sqrt{x}-4)(\sqrt{x}+4)}=\frac{1}{\sqrt{x}+4}\)
b. Khi $x=4-2\sqrt{3}=(\sqrt{3}-1)^2\Rightarrow \sqrt{x}=\sqrt{3}-1$
$A=\frac{1}{\sqrt{3}-1+4}=\frac{1}{\sqrt{3}+3}$
1: =>x^2+4x-21=0
=>(x+7)(x-3)=0
=>x=3 hoặc x=-7
2: =>(2x-5-4)(2x-5+4)=0
=>(2x-9)(2x-1)=0
=>x=9/2 hoặc x=1/2
3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15
=>-9x^2+27x+9x^2+18x+9=15
=>18x=15-9-27=-21
=>x=-7/6
6: =>4x^2+4x+1-4x^2-16x-16=9
=>-12x-15=9
=>-12x=24
=>x=-2
7: =>x^2+6x+9-x^2-4x+32=1
=>2x+41=1
=>2x=-40
=>x=-20
\(x-\frac{2}{4}=\frac{-16}{2}-x\)
\(x-\frac{1}{2}=-8-x\)
\(x+x=-8+\frac{1}{2}\)
\(2x=\frac{-15}{2}\)
\(x=\frac{-15}{4}\)
vậy \(x=\frac{-15}{4}\)
Ta có : \(\frac{x-2}{4}=\frac{-16}{2-x}\)
\(\Rightarrow\left(x-2\right)\left(2-x\right)=-16.4=-64=-8.8\)
Ta thấy (x - 2) và (2 - x) là 2 số đối nhau .
\(\Rightarrow x-2=8\)
\(\Rightarrow x=10\)
(2 - x)/16 = -4/(x - 2)
(2 - x)/16 = 4/(2 - x)
(2 - x)² = 16.4
(2 - x)² = 64
2 - x = -8 hoặc 2 - x = 8
*) 2 - x = -8
x = 2 - (-8)
x = 10
*) 2 - x = 8
x = 2 - 8
x = -6
Vậy x = -6; x = 10
ĐKXĐ: x<>2
\(\dfrac{2-x}{16}=\dfrac{-4}{x-2}\)
=>\(\dfrac{x-2}{-16}=\dfrac{-4}{x-2}\)
=>\(\left(x-2\right)^2=\left(-16\right)\cdot\left(-4\right)=64\)
=>\(\left[{}\begin{matrix}x-2=8\\x-2=-8\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=10\left(nhận\right)\\x=-6\left(nhận\right)\end{matrix}\right.\)