cmr ( a+b+c)^2= a^2+b^2+c^2+2ab+2ac+2bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a2 + b2 + c2 = (a + b + c)2
<=> ab + bc + ca = 0
<=> \(\hept{\begin{cases}ab=-bc-ca\\bc=-ac-ab\\ca=-ab-bc\end{cases}}\)
Khi đó a2 + 2bc = a2 + bc + bc = a2 + bc - ac - ab = (a - b)(a - c)
Tương tư b2 + 2ac = (b - a)(b - c)
c2 + ab = (c - a)(c - b)
Khi đó \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{-a^2\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{-b^2\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{-c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{-a^2b+a^2c-b^2c+b^2a-c^2a+c^2b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)(đpcm)
Lời giải:
Xét hiệu:
$a^2+b^2+c^2-(2ab-2ac+2bc)=a^2+b^2+c^2-2ab+2ac-2bc$
$=(a^2+b^2-2ab)+c^2+2c(a-b)$
$=(a-b)^2+c^2+2c(a-b)=(a-b+c)^2\geq 0, \forall a,b,c\in\mathbb{R}$
$\Rightarrow a^2+b^2+c^2\geq 2ab-2ac+2bc$
Vậy ta có đpcm.
Dấu "=" xảy ra khi $a-b+c=0$
Bạn lưu ý lần sau gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để đề được rõ ràng hơn nhé.
a2+b2+c2=(a+b+c)2<=> ab+bc+ca=0
\(\Rightarrow S=\frac{a^2}{a^2+bc-\left(ab+ca\right)}+\frac{b^2}{b^2+ac-\left(ab+bc\right)}+\frac{c^2}{c^2+ab-\left(bc+ca\right)}\)
\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(b-c\right)\left(a-b\right)}-\frac{c^2}{\left(b-c\right)\left(c-a\right)}\)
\(=\frac{a^2\left(b-c\right)-b^2\left(a-c\right)-c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
M tương tự
Áp dụng bđt Cauchy Schwarz dạng Engel ta được:
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}\)=1
Áp dụng bđt Cauchy-Schwarz dạng Engel ta có :
\(VT\ge\frac{\left(a+b+c\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
=> đpcm
Dấu "=" xảy ra <=> a = b = c
Biến đổi vế trái ta có
(a+b+c)^2 = (a+b + c)( a+b+c) = a(a+b + c) + b(a+b+c ) + c (a+b+c )
= a^2 + ab +ac + ab + b^2 + bc + ac + bc + c^2
= a^2 + b^2 + c^2 + 2ab + 2bc + 2ac => ĐPCM
Ta có:
(a + b + c)2 = (a + b + c)(a + b + c)
= a2 + ab + ac + ab + b2 + bc + ac + bc + c2
= a2 + b2 + c2 + 2ab + 2bc + 2ac (đpcm)
Vậy (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac.