K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

Xét tứ giác AIHK có \(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)

nên AIHK là hình chữ nhật

Kẻ Ax là tiếp tuyến của (O) tại A

=>OA\(\perp\)Ax tại A

Xét ΔAHC vuông tại H có HK là đường cao

nên \(AK\cdot AC=AH^2\left(1\right)\)

Xét ΔAHB vuông tại H có HI là đường cao

nên \(AI\cdot AB=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AI\cdot AB=AK\cdot AC\)

=>\(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)

Xét ΔAIK và ΔACB có

\(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)

\(\widehat{IAK}\) chung

Do đó: ΔAIK~ΔACB

=>\(\widehat{AKI}=\widehat{ABC}\)

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{xAC}=\widehat{ABC}\)

=>\(\widehat{xAC}=\widehat{AKI}\)

mà hai góc này là hai góc ở vị trí so le trong

nên IK//Ax

=>OA\(\perp\)IK

 

b: ΔOMN cân tại O

mà OA là đường cao

nên OA là đường trung trực của MN

=>AM=AN

=>\(\widehat{AMN}=\widehat{ANM}\)

=>\(sđ\stackrel\frown{AM}=sđ\stackrel\frown{AN}\)

Xét (O) có

\(\widehat{AMN}\) là góc nội tiếp chắn cung AN

\(\widehat{ABM}\) là góc nội tiếp chắn cung AM

\(sđ\stackrel\frown{AM}=sđ\stackrel\frown{AN}\)

Do đó: \(\widehat{AMN}=\widehat{ABM}\)

Xét ΔAMI và ΔABM có

\(\widehat{AMI}=\widehat{ABM}\)

\(\widehat{MAI}\) chung

Do đó: ΔAMI~ΔABM

=>\(\dfrac{AM}{AB}=\dfrac{AI}{AM}\)

=>\(AM^2=AI\cdot AB\)

=>AM=AH

=>ΔAMH cân tạiA

a: góc AIH=góc AKH=góc KAI=90 độ

=>AIHK là hình chữ nhật

góc AKI+góc OAK

=góc AHI+góc OCA

=góc OBA+góc OCA=90 độ

=>AO vuông góc IK

b: Xét ΔAMB và ΔAIM có

góc ABM=góc AMI

góc MAB chung

=>ΔAMB đồng dạng với ΔAIM

=>AM/AI=AB/AM

=>AM^2=AI*AB

=>AM=AH

=>ΔAMH cân tại A

24 tháng 10 2016

a)Tứ giác AEHF là hình chữ nhật vì có 3 góc vuông \(\Rightarrow\widehat{HAF}=\widehat{EFA}\)

\(\Rightarrow\widehat{OAC}=\widehat{OCA}\)

\(\Rightarrow\widehat{OCA}+\widehat{AFE}=90^0\)\(\Rightarrow OA\)vuông góc với EF

a) Xét (O) có 

ΔABC nội tiếp đường tròn(A,B,C∈(O))

BC là đường kính của (O)(gt)

Do đó: ΔABC vuông tại A(Định lí)

Ta có: BC=BH+HC(H nằm giữa B và C)

mà BH=9cm(gt)

và CH=16cm(gt)

nên BC=9+16=25(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow AB^2=9\cdot25=225\)

hay AB=15(cm)

Vậy: Khi BH=9cm và CH=16cm thì AB=15cm

b) Xét tứ giác AEMF có

\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)

\(\widehat{MFA}=90^0\)(MF⊥AC)

\(\widehat{AEM}=90^0\)(ME⊥AB)

Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

⇒MF=AE(Hai cạnh đối trong hình chữ nhật AEMF)

Ta có: EM⊥AB(gt)

AC⊥AB(gt)

Do đó: EM//AC(Định lí 1 từ vuông góc tới song song)

Xét ΔABC có 

E∈AB(gt)

M∈BC(gt)

EM//AC(cmt)

Do đó: \(\dfrac{BE}{AE}=\dfrac{BM}{MC}\)(Định lí Ta lét)

\(\dfrac{BE}{MF}=\dfrac{BM}{MC}\)

hay \(BE\cdot MC=BM\cdot MF\)(đpcm)

Gọi G là trung điểm của AM

Ta có: ΔAHM vuông tại M(AH⊥HM)

mà HG là đường trung tuyến ứng với cạnh huyền AM(G là trung điểm của AM)

nên \(HG=\dfrac{AM}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AG=GM=\dfrac{AM}{2}\)(G là trung điểm của AM)

nên HG=AG=GM(1)

Ta có: ΔAEM vuông tại E(ME⊥AB tại E)

mà EG là đường trung tuyến ứng với cạnh huyền AM(G là trung điểm của AM)

nên \(EG=\dfrac{AM}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(GA=GM=\dfrac{AM}{2}\)(G là trung điểm của AM)

nên EG=GA=GM(2)

Từ (1) và (2) suy ra GM=GA=GE=GH

hay A,E,H,M cùng thuộc một đường tròn(đpcm)

24 tháng 2 2020

Em vừa nghĩ ra 2 cách làm bằng kiến thức lớp 7, co check giùm em nhé!

Ta có: \(\widehat{CAD}=90^0-\widehat{DAB}\)

và \(\widehat{CDA}=90^0-\widehat{HAD}\)

Mà \(\widehat{DAB}=\widehat{HAD}\left(gt\right)\Rightarrow AC=DC\)

Tương tự ta có: AB = EB

\(\Rightarrow AB+AC=EB+DC\)

\(=ED+DB+DC=DE+BC\)

\(\Rightarrow DE=AB+AC-BC=3+4-5=2\left(cm\right)\)

Vậy DE = 2 cm

2 tháng 2 2020

A B C H D E

Ta có: \(\Delta\)ABC vuông tại A

=> BC\(^2\)=AB\(^2\)+ AC\(^2\)= 3\(^2\)+ 4\(^2\)=  25 => BC = 5 (cm)

Có: \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{3^2}+\frac{1}{4^2}=\frac{25}{144}\)

=> AH = 2,4  (cm)

Có: \(CH=\frac{AC^2}{BC}=\frac{4^2}{5}=3,2\)(cm)

=> BH = 5 - 3,2 = 1,8 ( cm )

AE là phân giác ^CAH => \(\frac{EC}{EH}=\frac{AC}{AH}=\frac{4}{2,4}\) mà EC + EH = CH = 3,2 

=> EC = 2 ( cm ) ; EH = 1,2 ( cm )

AD là phân giác ^BAH  => \(\frac{DH}{DB}=\frac{AH}{AB}=\frac{2,4}{3}\); mà DH + DB = HB = 1,8 

=> DH = 0,8 ( cm ) ; BD = 1( cm )

Vậy DE = DH + HE = 0,8 + 1,2 = 2 ( cm )

23 tháng 12 2015

b

AH vuông góc với BC

BC song song với EK

=>AH vuông góc với EK

23 tháng 12 2015

làm ơn làm phước tick mình lên 60 với

a: góc AEB=góc AHB=90 độ

=>AEHB nội tiếp

Xét ΔAHB vuông tại H và ΔACD vuông tại C có

góc ABH=góc ADC

=>ΔAHB đồng dạng với ΔACD
b: góc HAC+góc AHE

=góc ABE+90 độ-góc HAB

=90 độ

=>HE vuông góc AC

=>HE//CD