so sánh 3^385 và 3^100 GIÚp mình nhe oki tks Ạk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho S= 1/3 +2/3^2+3/3^3+..+100/3^100 So sánh 5^2019 và 5^2020
Hiện tại mình đang cần gấp giúp mk nha!
\(5^{2019}< 5^{2020}\)
vì
2020>2019
=>\(5^{2019}< 5^{2020}\)
920=(32)20=340
2713=(33)13=339
vì 340>339 nên 920>2713
Vậy 920>2713
A B C D O M I
a/ Xét tg ABD và tg CBD có đường cao từ D->AB = đường cao từ B->CD nên
\(\frac{S_{ABD}}{S_{CBD}}=\frac{AB}{CD}=\frac{2}{5}\)
b/
Gọi O là giao của AC và BD, nối M với O cắt AB tại I
Ta có \(\frac{S_{ABD}}{S_{CBD}}=\frac{2}{5}\) Hai tg này có chung cạnh BD nên
\(\frac{S_{ABD}}{S_{CBD}}=\) đường cao từ A->BD / đường cao từ C->BD \(=\frac{2}{5}\)
Xét tg ABO và tg BCO có chung cạnh BO nên
\(\frac{S_{ABO}}{S_{BCO}}=\)đường cao từ A->BD / đường cao từ C->BD \(=\frac{2}{5}\) Hai tg này có chung đường cao từ B->AC nên
\(\frac{S_{ABO}}{S_{BCO}}=\frac{AO}{CO}=\frac{2}{5}\)
Xét tg AMO và tg CMO có chung đường cao từ M->AC nên
\(\frac{S_{AMO}}{S_{CMO}}=\frac{AO}{CO}=\frac{2}{5}\) Hai tg này có chung cạnh MO nên
\(\frac{S_{AMO}}{S_{CMO}}=\) đường cao từ A->MO / đường cao từ C->MO \(=\frac{2}{5}\)
Xét tg AMI và tg CMI có chung cạnh MI nên
\(\frac{S_{AMI}}{S_{CMI}}=\)đường cao từ A->MO / đường cao từ C->MO \(=\frac{2}{5}\Rightarrow S_{AMI}=\frac{2xS_{CMI}}{5}\)
Chứng minh tương tự ta cũng có
\(\frac{S_{BMI}}{S_{DMI}}=\frac{2}{5}\Rightarrow S_{BMI}=\frac{2xS_{DMI}}{5}\)
\(\Rightarrow S_{AMI}+S_{BMI}=\frac{2}{5}x\left(S_{CMI}+S_{DMI}\right)=\frac{2}{5}x\left(S_{BMI}+S_{BIC}+S_{AMI}+S_{AID}\right)\)
\(\Rightarrow\frac{3}{5}x\left(S_{AMI}+S_{BMI}\right)=\frac{2}{5}x\left(S_{BIC}+S_{AID}\right)\)
\(\Rightarrow\frac{3}{5}xS_{AMB}=\frac{2}{5}x\left(S_{BIC}+S_{AID}\right)\) (*)
Xét tg AID và tg AIC có chung cạnh AI và đường cao từ D->AB = đường cao từ C->AB nên \(S_{AID}=S_{AIC}\) Thay vào (*)
\(\Rightarrow\frac{3}{5}xS_{AMB}=\frac{2}{5}x\left(S_{BIC}+S_{AIC}\right)=\frac{2}{5}xS_{ABC}\Rightarrow\frac{S_{AMB}}{S_{ABC}}=\frac{2}{3}\)
Xét tg AMB và tg ABC có chung đường cao từ A->MC nên
\(\frac{S_{AMB}}{S_{ABC}}=\frac{MB}{BC}=\frac{2}{3}\)
Ta có: \(2^{30}+3^{30}+4^{30}=\left(2^3\right)^{10}+\left(3^3\right)^{10}+\left(4^3\right)^{10}=8^{10}+27^{10}+64^{10}\)
\(3^{20}+6^{20}+8^{20}=\left(3^2\right)^{10}+\left(6^2\right)^{10}+\left(8^2\right)^{10}=9^{10}+36^{10}+64^{10}\)
Vì \(8< 9\)\(\Rightarrow8^{10}< 9^{10}\)
mà \(27< 36\)\(\Rightarrow27^{10}< 36^{10}\)
\(\Rightarrow8^{10}+27^{10}< 9^{10}+36^{10}\)
\(\Rightarrow8^{10}+27^{10}+64^{10}< 9^{10}+36^{10}+64^{10}\)
hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)
so sánh: 2^30 + 3^30 + 4^30 và 3^20 + 6^20 + 8^20
2^30 = ( 2^3)^10 = 8^ 10
3^30 = (3^3)^10 = 27^10
4^30 = (4^3)^10 = 64^10
3^20 = (3^2)^10 = 9^10
6^20 = (6^2) = 36^10
8^20 = (8^2)^10 = 84^10
vì 9^10 > 8^10
36^10 > 27^10
84^10 > 64^10
=> 2^30 + 3^30 + 4^30 < 3^20 + 6^20 + 8^20
3385 > 3100
Vì số mũ lớn hơn