K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

Đặt \(f\left(x\right)=x^{1996}+x^{196}+x^{19}+x+1\)

Vì đa thức chia là một đa thức bậc hai nên số dư của f(x) khi chia cho (1-x2) sẽ là một đa thức bậc nhất.

Ta có : \(f\left(x\right)=x^{1996}+x^{196}+x^{19}+x+1\)

\(=\left(x^{1996}-x^4\right)+\left(x^{196}-x^4\right)+\left(x^{19}-x^3\right)+\left(2x^4-2\right)+\left(x^3-x\right)+\left(2x+3\right)\)

\(=-x^4\left[1-\left(x^4\right)^{498}\right]-x^4\left[1-\left(x^4\right)^{48}\right]-x^3\left[1-\left(x^4\right)^4\right]-2\left(1-x^4\right)-x\left(1-x^2\right)+\left(2x+3\right)\)

\(=-x^4\left(1-x^4\right).A\left(x\right)-x^4\left(1-x^4\right).B\left(x\right)-x^3\left(1-x^4\right).C\left(x\right)-2\left(1-x^4\right)-x\left(1-x^2\right)+\left(2x+3\right)\)

\(=-x^4\left(1-x^2\right)\left(1+x^2\right).A\left(x\right)-x^4\left(1-x^2\right)\left(1+x^2\right).B\left(x\right)-x^3\left(1-x^2\right)\left(1+x^2\right).C\left(x\right)-2\left(1-x^2\right)\left(1+x^2\right)-x\left(1-x^2\right)+\left(2x+3\right)\)

\(=\left(1-x^2\right)\left[-x^4\left(1+x^2\right).A\left(x\right)-x^4\left(1+x^2\right).B\left(x\right)-x^3\left(1+x^2\right).C\left(x\right)-2\left(1+x^2\right)-x\right]+\left(2x+3\right)\)

Dễ thấy \(\left(1-x^2\right)\left[-x^4\left(1+x^2\right).A\left(x\right)-x^4\left(1+x^2\right).B\left(x\right)-x^3\left(1+x^2\right).C\left(x\right)-2\left(1+x^2\right)-x\right]⋮\left(1-x^2\right)\) và (2x+3) không chia hết cho (1-x2)

Do đó phần dư của f(x) cho (1-x2) chính là 2x+3

14 tháng 7 2016

<br class="Apple-interchange-newline"><div id="inner-editor"></div>ƒ (x)=x1996+x196+x19+x+1

Vì đa thức chia là một đa thức bậc hai nên số dư của f(x) khi chia cho (1-x2) sẽ là một đa thức bậc nhất.

Ta có : ƒ (x)=x1996+x196+x19+x+1

=(x1996−x4)+(x196−x4)+(x19−x3)+(2x4−2)+(x3−x)+(2x+3)

=−x4[1−(x4)498]−x4[1−(x4)48]−x3[1−(x4)4]−2(1−x4)−x(1−x2)+(2x+3)

=−x4(1−x4).A(x)−x4(1−x4).B(x)−x3(1−x4).C(x)−2(1−x4)−x(1−x2)+(2x+3)

=−x4(1−x2)(1+x2).A(x)−x4(1−x2)(1+x2).B(x)−x3(1−x2)(1+x2).C(x)−2(1−x2)(1+x2)−x(1−x2)+(2x+3)

=(1−x2)[−x4(1+x2).A(x)−x4(1+x2).B(x)−x3(1+x2).C(x)−2(1+x2)−x]+(2x+3)

Dễ thấy (1−x2)[−x4(1+x2).A(x)−x4(1+x2).B(x)−x3(1+x2).C(x)−2(1+x2)−x]⋮(1−x2) và (2x+3) không chia hết cho (1-x2)

Do đó phần dư của f(x) cho (1-x2) chính là 2x+3

26 tháng 10 2018

Thiên Hương đẹp quá đi mất?

28 tháng 10 2018

 Cho hoi dap de hoi chi khong duoc noi lung tung day la pham loi trong hoi dap

6 tháng 7 2018

GỌI THƯƠNG CỦA PHÉP CHIA f(x) cho (x-2)    và (x+5) lần lượt là p(x) và Q(x)

theo bài ra ta có 

\(\hept{\begin{cases}f._x=\left(x-2\right).p._{\left(x\right)}+1............\left(1\right)\\f._{\left(x\right)}=\left(x+5\right).Q._{\left(x\right)}+8.......\left(2\right)\end{cases}}\)

GỌI THƯƠNG CỦA PHÉP CHIA f(x) cho (x-2)(x+5)  [ là x^2+3x-10  phân tích thành]              =2x là g(x) và số dư là  nhị thức bậc nhất là ax+b

ta có,            \(f._{\left(x\right)}=\left(x-2\right)\left(x+5\right).g._{\left(x\right)}+ax+b....................\left(3\right)\)

TỪ (1) VÀ (3) TA CÓ X=2 THÌ                    \(\hept{\begin{cases}f._2=1\\f_2=2a+b\end{cases}}\)        

=>         2a+b=1    =>b=1-2a                (4)

TỪ (2) VÀ (3) TA CÓ X=-5   THÌ                     \(\hept{\begin{cases}f_{\left(-5\right)}=8\\f_{\left(-5\right)}=-5a+b\end{cases}}\)

=>        8=-5a+b  =>b=8+5a                 (5)

TỪ (4) VÀ (5) =>1-2a=8+5a    <=> a=-1

                                                => b=3

vậy số dư là   -x+3

vậy đa thức f(x) =(x-2)(x+5) .2x+(-x+3)=\(2x^3+6x^2-21x+3\)  

2 tháng 12 2015

ticjk mình mình tick lại ho

2 tháng 12 2015

1)2x+5 chia hết cho x+1

2x+2+3 chia hết cho x+1

2(x+1)+3 chia hết cho x+1

=>3 chia hết cho x+1 hay x+1EƯ(3)={1;3}

=>xE{0;2}

2)Gọi số chia là a, thương là b

Ta có: 77=a*b+7(a>7)

a*b=77-7=70

*)nếu a=8 thì b thập phân(loại)

*)nếu a=9 thì b thập phân nốt(loại)

*)Nếu a=10 thì b=7(chọn)

Vậy số chia là 10 và thương là 7