\(\left(\frac{3}{\frac{4}{32}}x-1\right)5=243\)( Tất cả trên 32 nhé! 3 phần 4 nhân x trừ 1 tất cả trên 32 nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(3:\dfrac{4}{32}\cdot x-1\right)^5=243\)
\(\Leftrightarrow\left(24x-1\right)^5=243\)
=>24x-1=3
=>24x=4
hay x=1/6
\(a,3^x>\dfrac{1}{243}\\ \Leftrightarrow3^x>3^{-5}\\ \Leftrightarrow x>-5\\ b,\left(\dfrac{2}{3}\right)^{3x-7}\le\dfrac{3}{2}\\ \Leftrightarrow3x-7\le1\\ \Leftrightarrow3x\le8\\ \Leftrightarrow x\le\dfrac{8}{3}\\ c,4^{x+3}\ge32^x\\ \Leftrightarrow2^{2x+6}\ge2^{5x}\\ \Leftrightarrow2x+6\ge5x\\ \Leftrightarrow3x\le6\\ \Leftrightarrow x\le2\)
d, Điều kiện: x > 1
\(log\left(x-1\right)< 0\\ \Leftrightarrow x-1< 1\\ \Leftrightarrow1< x< 2\)
e, Điều kiện: \(x>\dfrac{1}{2}\)
\(log_{\dfrac{1}{5}}\left(2x-1\right)\ge log_{\dfrac{1}{5}}\left(x+3\right)\\ \Leftrightarrow2x-1\ge x+3\\ \Leftrightarrow x\ge4\)
f, Điều kiện: x > 4
\(ln\left(x+3\right)\ge ln\left(2x-8\right)\\ \Leftrightarrow x+3\ge2x-8\\\Leftrightarrow4< x\le11\)
\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)
Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).
Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)
do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).
Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)
\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).
Thử lại.
Với \(m=\frac{5}{2}\): \(f''\left(x\right)=25x^3-5x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\)
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Với \(m=-2\): \(f''\left(x\right)=16x^3+4x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\).
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).
Chọn D.
Cách nêu tính chất đặc trưng:
A=\(\left\{x/\left(x^2+2x-3\right)\left(x^2-13x+42\right)\right\}\)
B=\(\left\{\frac{2x+1}{2^{x+1}},x\in N,0\le x\le4\right\}\)
Bài 1 :
\(\left(-2\right)\left(x+1\right)-3\left(1-x\right)=4\)
\(\Leftrightarrow-2x-2-3+3x=4\)
\(\Leftrightarrow x=4+2+3=9\)
Bài 2 :
Cho \(S=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\)
\(\Leftrightarrow S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\)
\(+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(\Rightarrow S< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)\)
\(+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)
\(\Leftrightarrow S< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)(1)
Lại có :
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\)
\(+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(\Leftrightarrow S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)
\(+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)
\(\Leftrightarrow S>\frac{10}{40}+\frac{10}{50}+\frac{10}{60}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\)(2)
Từ (1) và (2) , ta có :
\(\frac{3}{5}< S< \frac{4}{5}hay\frac{3}{5}< \frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}< \frac{4}{5}\)
\(\frac{2^{4-x}}{16^5}=32^6\)
=> \(\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
=> \(\frac{2^{4-x}}{2^{20}}=2^{30}\)
=> \(2^{4-x}=2^{30}.2^{20}\)
=> \(2^{4-x}=2^{50}\)
=> 4 - x = 50
=> x = 4 - 50 = -46
\(\frac{3^{2x+3}}{9^3}=9^{14}\)
=> \(\frac{3^{2x+3}}{\left(3^2\right)^3}=\left(3^2\right)^{14}\)
=> \(\frac{3^{2x+3}}{3^6}=3^{28}\)
=> \(3^{2x+3}=3^{28}.3^6\)
=> \(3^{2x+3}=3^{34}\)
=> 2x + 3 = 34
=> 2x = 34 - 3
=> 2x = 31
=> x = 31/2