Phân tích đa thức thành nhân tử
1. (x+y)(y+z)(z+x)+xyz
2. x^8+x^4+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}a=x+y\\b=y+z\\c=x+z\end{matrix}\right.\Leftrightarrow x+y+z=\dfrac{a+b+c}{2}\)
\(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z+x\right)^3\\ =8\left(\dfrac{a+b+c}{2}\right)^3-a^3-b^3-c^3\\ =\left(a+b+c\right)^3-a^3-b^3-c^3\\ =\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)-\left(a+b\right)^3+3ab\left(a+b\right)-c^3\\ =3\left(a+b\right)\left(ac+bc+c^2+ab\right)\\ =3\left(a+b\right)\left(b+c\right)\left(a+c\right)\\ =3\left(x+y+y+z\right)\left(y+z+z+x\right)\left(z+x+x+y\right)\\ =3\left(x+2y+z\right)\left(x+y+2z\right)\left(2x+y+z\right)\)
a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-8\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-8\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-8\)
\(=\left(x^2+5x+5\right)^2-1-8\)
\(=\left(x^2+5x+5\right)^2-3^2\)
\(=\left(x^2+5x+2\right)\left(x^2+5x+8\right)\)
b) \(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)\)
\(=xy\left(x-y\right)+y^2z-yz^2+z^2x-zx^2\)
\(=xy\left(x-y\right)+z^2\left(x-y\right)-z\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(xy+z^2-zx-yz\right)\)
\(=\left(x-y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]\)
\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\)
a) ( x + 1 )( x + 2 )( x + 3 )( x + 4 ) - 8
= [ ( x + 1 )( x + 4 ) ][ ( x + 2 )( x + 3 ) ] - 8
= ( x2 + 5x + 4 )( x2 + 5x + 6 ) - 8
Đặt t = x2 + 5x + 5
bthuc ⇔ ( t - 1 )( t + 1 ) - 8
= t2 - 1 - 8
= t2 - 9
= ( t - 3 )( t + 3 )
= ( x2 + 5x + 5 - 3 )( x2 + 5x + 5 + 3 )
= ( x2 + 5x + 2 )( x2 + 5x + 8 )
b) xy( x - y ) + yz( y - z ) + zx( z - x )
= x2y - xy2 + y2z - yz2 + zx( z - x )
= ( y2z - xy2 ) - ( yz2 - x2y ) + zx( z - x )
= y2( z - x ) - y( z2 - x2 ) + zx( z - x )
= ( z - x )( y2 + zx ) - y( z - x )( z + x )
= ( z - x )( y2 + zx - yz - yx )
= ( z - x )[ ( y2 - yx ) - ( yz - zx ) ]
= ( z - x )[ y( y - x ) - z( y - x ) ]
= ( z - x )( y - x )( y - z )
a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)
\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)
b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)
\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)
đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha
c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)
\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)
d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.
có gì liên hệ chị. đúng nha ;)
a: =(x-z)(y+8)
b; =x^2-2x-3x+6
=(x-2)(x-3)
c: =x^4+10x^2-x^2-10
=(x^2+10)(x^2-1)
=(x^2+10)(x-1)(x+1)
-(z+x)3 mới đúng-
đặt x+y=a , y+z=b , z+x=c thì a+b+c=2(x+y+z)
ta có 8(x+y+z)3-(x+y)3-(y+z)3-(z+x)3=[2(x+y+z)]3-(x+y)3-(y+z)3-(z+x)3=(a+b+c)3-a3-b3-c3=3(a+b)(b+c)(c+a)
=3(x+2y+z)(y+2z+x)(z+2x+y)
1) \(x^2-4xy+4y^2+xz-2yz\)
\(=\left(x^2-4xy+4y^2\right)+\left(xz-2yz\right)\)
\(=\left(x-2y\right)^2+z\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x-2y+z\right)\)
2) \(\left(x-y\right)^3+\left(x+y\right)^3\)
\(=\left[\left(x-y\right)+\left(x+y\right)\right]\left[\left(x-y\right)^2-\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\right]\)
\(=\left(x-y+x+y\right)\left(x^2-2xy+y^2-x^2+y^2+x^2+2xy+y^2\right)\)
\(=2x\left(x^2+3y^2\right)\)
bằng phương pháp j vậy bạn?