CÂU 5 : Cho a + b +c = a mũ 2 + b mũ 2 + c mũ 2 = 1 và x/a = y/b =z/c ( a, b, c khác 0 )
Hãy chứng minh : ( x + y + z ) mũ 2 = x mũ 2 + y mũ 2 + z mũ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 + 2xy - x2 - y2
= 1 - ( x2 - 2xy + y2 )
= 12 - ( x - y )2
= [ 1 - ( x - y ) ][ 1 + ( x - y ) ]
= ( y - x + 1 )( x - y + 1 )
a2 + b2 - c2 - d2 - 2ab + 2cd
= ( a2 - 2ab + b2 ) - ( c2 - 2cd + d2 )
= ( a - b )2 - ( c - d )2
= [ ( a - b ) - ( c - d ) ][ ( a - b ) + ( c - d ) ]
= ( a - b - c + d )( a - b + c - d )
a3b3 - 1
= ( ab )3 - 13
= ( ab - 1 )[ ( ab )2 + ab.1 + 12 ]
= ( ab - 1 )( a2b2 + ab + 1 )
x2( y - z ) + y2( z - x ) + z2( x - y )
= z2( x - y ) + x2y - x2z + y2z + y2x
= z2( x - y ) + ( x2y - y2x ) - ( x2z - y2z )
= z2( x - y ) + xy( x - y ) - z( x2 - y2 )
= z2( x - y ) + xy( x - y ) - z( x + y )( x - y )
= ( x - y )[ z2 + xy - z( x + y ) ]
= ( x - y )( z2 + xy - zx - zy )
= ( x - y )[ ( z2 - zx ) - ( zy - xy ) ]
= ( x - y )[ z( z - x ) - y( z - x ) ]
= ( x - y )( z - x )( z - y )
cho a+b+c=a mũ 2 +b mũ 2 +c mũ 2=2 và x:y:z=a:b:c chứng minh rằng(x+y+z)mũ 2=2x mũ 2 +2y mũ 2+2z mũ2
1. \(\left(-a\right)^7\) : \(a^5\) = \(\left(-a\right)^2\) = a
2. 28 \(y^4z^3\) : 14 \(y^3z^2\) = 2yz
3. 25\(a^2bc^2\) : 5abc = 5ac
1a) \(\left(x+1\right)^2\left(x-2\right)^2=0\)
=> \(\orbr{\begin{cases}\left(x+1\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
b) \(\left(x-9\right)^5\left(x-5\right)^8=0\)
=> \(\orbr{\begin{cases}\left(x-9\right)^5=0\\\left(x-5\right)^8=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-9=0\\x-5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=9\\x=5\end{cases}}\)
Ta có: \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau và \(a+b+c=a^2+b^2+c^2=1\), ta có:
+, \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\)
\(\Rightarrow\left(\dfrac{x}{a}\right)^2=\left(x+y+z\right)^2\) (1)
+, \(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)
\(\Rightarrow\left(\dfrac{x}{a}\right)^2=x^2+y^2+z^2\) (2)
Từ (1) và (2) \(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\) (đpcm)