K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2021

H/S đồng biến `x<0`

`<=>2-m>0`

`<=>m>2`

16 tháng 5 2021

m<2

Để hàm số đồng biến khi \(x< 0\) \(\Leftrightarrow2m-3>0\) \(\Leftrightarrow m>\dfrac{3}{2}\)

  Vậy ...

DT
12 tháng 12 2023

loading... 

12 tháng 12 2023

a: Để hàm số đồng biến trên R thì \(m^2-4>0\)

=>\(m^2>4\)

=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

b: Để hàm số nghịch biến trên R thì \(m^2-4< 0\)

=>\(m^2< 4\)

=>-2<m<2

12 tháng 12 2023

a) Hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 đồng biến

⇔ 3m - 1 > 0

⇔ 3m > 1

⇔ m > 1313 

Vậy m > 1313 thì hàm số y = (3m - 1)x + 2 đồng biến

b) Hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 nghịch biến

⇔ 3m - 1 < 0

⇔ 3m < 1

⇔ m < 1313 

Vậy m < 1313 thì hàm số y = (3m - 1)x + 2 nghịch biến

c) Đồ thị hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 đi qua điểm A(2; 3) nên thay x = 2; y = 3 vào hàm số y = (3m - 1)x + 2 ta được:

3 = (3m - 1).2 + 2 (m ≠≠ 1313)

⇔ 3 = 6m - 2 + 2

⇔ 3 = 6m

⇔ m = 1212 (t/m)

Vậy m =  1212 thì đồ thị hàm số y = (3m - 1)x + 2 đi qua điểm A(2; 3)

16 tháng 10 2020

m=2. Khi đó hàm số trở thành: f(x)= -4x-3

Khi đó hàm f(x) luôn nghịch biến vì hệ số a=-4<0

NV
12 tháng 1 2022

\(y'=x^2-2\left(m-1\right)x+3\left(m-1\right)\)

Hàm đồng biến trên khoảng đã cho khi với mọi \(x>1\) ta luôn có:

\(g\left(x\right)=x^2-2\left(m-1\right)x+3\left(m-1\right)\ge0\)

\(\Rightarrow\min\limits_{x>1}g\left(x\right)\ge0\)

Do \(a=1>0;-\dfrac{b}{2a}=m-1\)

TH1: \(m-1\ge1\Rightarrow m\ge2\)

\(\Rightarrow g\left(x\right)_{min}=f\left(m-1\right)=\left(m-1\right)^2-2\left(m-1\right)^2+3\left(m-1\right)\ge0\)

\(\Rightarrow\left(m-1\right)\left(4-m\right)\ge0\Rightarrow1\le m\le4\Rightarrow2\le m\le4\)

TH2: \(m-1< 1\Rightarrow m< 2\Rightarrow g\left(x\right)_{min}=g\left(1\right)=m\ge0\)

Vậy \(0\le m\le4\)

NV
17 tháng 7 2021

\(y'=\dfrac{2x^2-4mx-m^2+2m-1}{\left(x-m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi với mọi \(x>1\) ta có:

\(\left\{{}\begin{matrix}2x^2-4mx-m^2+2m-1\ge0\left(1\right)\\m\le1\end{matrix}\right.\)

Xét (1): ta có \(\Delta'=4m^2-2\left(-m^2+2m-1\right)=6m^2-4m+2>0\) ; \(\forall m\)

\(\Rightarrow\) (1) thỏa mãn khi: \(x_1< x_2\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\dfrac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-m^2+2m-1}{2}-2m+1\ge0\\2m< 2\end{matrix}\right.\) \(\Rightarrow-1-\sqrt{2}\le m\le-1+\sqrt{2}\)