Cho tam giác def cân tại d. Gọi m là trung điểm của ef.
A) chứng minh tam giác DEM bằng tấm giác DFM.
B) chứng minh DM song song È.
C) trên tia đối của MD lấy điểm K sao cho MK bằng MD. Chứng minh tam giác FDK cân tại F
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDEM và ΔDFM có
DE=DF
EM=FM
DM chung
Do đó: ΔDEM=ΔDFM
b: Ta có: ΔDEF cân tại D
mà DM là đường trung tuyến
nên DM là đường cao
c: Xét tứ giác DENF có
M là trung điểm của DN
M là trung điểm của FE
Do đó: DENF là hình bình hành
Suy ra: DE//FN
a) Xét △DEM và △KFM có
DM=KM(giả thiết)
góc DME=góc KMF(2 góc đối đỉnh)
EM=MF(Vì M là trung điểm của EF)
=>△DEM =△KFM(c-g-c)
=> góc MDE=góc MKF (2 góc tương ứng)
hay góc EDK= góc EKD mà 2 góc này là 2 góc so le trong bằng nhau của đường thẳng DK cắt 2 đường thẳng DE và KF
=>DE//KF
b) ta có DH⊥EF hay DP⊥EF => góc DHE =góc PHE =90 độ
Xét △DHE (góc DHE=90 độ)△PHE(góc PHE=90 độ) có
HD=HP
HE là cạnh chung
=> △DHE= △PHE(2 cạnh góc vuông)
=> góc DEM=góc PEM
=> EH là tia phân giác của góc DEP
hay EF là tia phân giác của góc DEP
vậy EF là tia phân giác của góc DEP
a: Xét ΔDEM và ΔDFM có
DE=DF
DM chung
EM=FM
Do đó: ΔDEM=ΔDFM
a) Sửa đề: ΔAMB=ΔDMC
Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
xét tam giác EMD và tam giác MFP, ta có
PM=DM (gt)
EM=MF (gt)
góc DME = góc FMP ( đối đỉnh )
=> tam giác DEM = tam giác PFM ( c.g.c)
=> góc EDM = góc FMP ( cạnh tương ứng)
mà 2 góc này ở vị trí so le trong => DE song song với FP
b , vì tam giác EDM có góc E = 90 độ
=> góc E > góc EFD => DF > DE
mà DE = FP => DF > FP
=> góc DPF > góc FDP
mà góc DPF = góc EDM ( vì tam giác DEM = tam giác PFM)
=> góc EDM> góc MDE
vì tam giác DEM = tam giác PFM => EM = MF (1)
xét tam giác IMF có
góc MIF = 90 độ
=> góc MIF > góc IFM
=> MF> IM (2)
từ 1 , 2 => EM > MI
a: Sửa đề: Cm ED//FN và FN vuông góc với FD
Xét tứ giác DENF có
M là trung điểm chung của DN và EF
góc EDF=90 độ
Do đó: DENF là hình chữ nhật
=>ED//FN và FN vuông góc với FD
Ôi xin lỗi nhé,nhưng mình không hiểu cái đề bài cho lắm!
a) Do ∆DEF cân tại D (gt)
⇒ DE = DF
Do M là trung điểm của EF (gt)
⇒ ME = MF
Xét ∆DEM và ∆DFM có:
DE = DF (cmt)
DM là cạnh chung)
ME = MF (cmt)
⇒ ∆DEM = ∆DFM (c-c-c)
b) Sửa đề: Chứng minh DM ⊥ EF
Do ∆DEM = ∆DFM (cmt)
⇒ ∠DME = ∠DMF (hai góc tương ứng)
Mà ∠DME + ∠DMF = 180⁰ (kề bù)
⇒ ∠DME = ∠DMF = 180⁰ : 2 = 90⁰
⇒ DM ⊥ EF
c) Xét ∆DEM và ∆KFM có:
DM = KM (gt)
∠DME = ∠KMF (đối đỉnh)
ME = MF (cmt)
⇒ ∆DEM = ∆KFM (c-g-c)
⇒ DE = KF (hai cạnh tương ứng)
Mà DE = DF (cmt)
⇒ KF = DF
⇒ ∆FDK cân tại F