K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔPOQ có \(\dfrac{PX}{XO}=\dfrac{PY}{YQ}\left(\dfrac{5}{2}=\dfrac{7.5}{3}\right)\)

nên XY//OQ

Xét ΔMNQ và ΔNMP có

MN chung

NQ=MP

MQ=NP

=>ΔMNQ=ΔNMP

=>góc OMN=góc ONM

=>OM=ON 

OM+OP=MP

ON+OQ=NQ

mà MP=NQ và OM=ON

nên OP=OQ

6 tháng 10 2016

Bạn viết đề rõ ràng hơn nhé, mình không đọc được :(

6 tháng 10 2016

mik đăng cái khác rồi đó

 

1: Xét ΔOPQ có 

I là trung điểm của PQ

IN//OP

Do đó: N là trung điểm của OQ

Xét ΔOPQ có 

I là trung điểm của PQ

IM//OQ

Do đó: M là trung điểm của OP

Xét ΔMPI và ΔNQI có 

MP=NQ

\(\widehat{P}=\widehat{Q}\)

PI=QI

Do đó: ΔMPI=ΔNQI

Suy ra: IM=IN

hay ΔIMN cân tại I

2: Ta có: OM=ON

nên O nằm trên đường trung trực của MN(1)

Ta có: IM=IN

nên I nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OI là đường trung trực của MN

17 tháng 4 2016

Vì 0xy+yz+xz=0.Nên:X,y,z đều bằng 0 và bằng nhau.

20 tháng 4 2018

\(\ge\)0 nhá

22 tháng 4 2018

Ta có: \(x-y+z=0\)
    \(\Rightarrow\left(x-y+z\right)^2=0 \)
  \(\Rightarrow\left(x-y+z\right).\left(x-y+z\right)=0\)
   \(\Rightarrow x\left(x-y+z\right)-y\left(x-y+z\right)+z\left(x-y+z\right)=0\)
   \(\Rightarrow x^2-xy+xz-xy+y^2-yz+xz-yz+z^2=0\)
  \(\Rightarrow x^2+y^2+z^2=xy+xy+yz+yz-xz-xz\)
   \(\Rightarrow x^2+y^2+z^2=2xy+2yz-2xz\)
   \(\Rightarrow x^2+y^2-z^2=2\left(xy+yz-xz\right)\)
Mà: \(x^2+y^2-z^2\ge0\)
\(\Rightarrow2\left(xy+yz-xz\right)\ge0\)
\(\Rightarrow xy+yz-xz\ge0\)(đpcm)
   Vậy: \(xy+yz-xz\ge0\)