Chứng minh XZ//OQ giải giúp em
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔMNQ và ΔNMP có
MN chung
NQ=MP
MQ=NP
=>ΔMNQ=ΔNMP
=>góc OMN=góc ONM
=>OM=ON
OM+OP=MP
ON+OQ=NQ
mà MP=NQ và OM=ON
nên OP=OQ
1: Xét ΔOPQ có
I là trung điểm của PQ
IN//OP
Do đó: N là trung điểm của OQ
Xét ΔOPQ có
I là trung điểm của PQ
IM//OQ
Do đó: M là trung điểm của OP
Xét ΔMPI và ΔNQI có
MP=NQ
\(\widehat{P}=\widehat{Q}\)
PI=QI
Do đó: ΔMPI=ΔNQI
Suy ra: IM=IN
hay ΔIMN cân tại I
2: Ta có: OM=ON
nên O nằm trên đường trung trực của MN(1)
Ta có: IM=IN
nên I nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OI là đường trung trực của MN
Ta có: \(x-y+z=0\)
\(\Rightarrow\left(x-y+z\right)^2=0
\)
\(\Rightarrow\left(x-y+z\right).\left(x-y+z\right)=0\)
\(\Rightarrow x\left(x-y+z\right)-y\left(x-y+z\right)+z\left(x-y+z\right)=0\)
\(\Rightarrow x^2-xy+xz-xy+y^2-yz+xz-yz+z^2=0\)
\(\Rightarrow x^2+y^2+z^2=xy+xy+yz+yz-xz-xz\)
\(\Rightarrow x^2+y^2+z^2=2xy+2yz-2xz\)
\(\Rightarrow x^2+y^2-z^2=2\left(xy+yz-xz\right)\)
Mà: \(x^2+y^2-z^2\ge0\)
\(\Rightarrow2\left(xy+yz-xz\right)\ge0\)
\(\Rightarrow xy+yz-xz\ge0\)(đpcm)
Vậy: \(xy+yz-xz\ge0\)
Xét ΔPOQ có \(\dfrac{PX}{XO}=\dfrac{PY}{YQ}\left(\dfrac{5}{2}=\dfrac{7.5}{3}\right)\)
nên XY//OQ