K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

a) Dễ dàng chứng minh tam giác ABC và ACD đều

Suy ra AC=a, SA= AC.tan(gócSCA)=a.tan(600)

\(V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.a\sqrt{3}.a^2.\frac{\sqrt{3}}{2}=\frac{a^3}{2}\)

b) Có 2 cách làm để tìm khoảng cách từ H đến mp(SCD), nhưng bạn nên chọn phương pháp tọa độ hóa cho dễ

Chọn A làm gốc tọa độ , các tia AD, AI, AS lần lượt trùng tia Ax, Ay, Az

Có ngay tọa độ các điểm \(S\left(0;0;a\sqrt{3}\right)\) , \(D\left(a;0;0\right)\) , \(I\left(0;\frac{a\sqrt{3}}{2};0\right)\)

\(\Rightarrow C\left(\frac{a}{2};\frac{a\sqrt{3}}{2};0\right)\)

theo số liệu đã cho, dễ xác định được điểm H chia đoạn SI với tỷ lệ 2:1

\(\Rightarrow H\left(0;\frac{a}{\sqrt{3}};\frac{a}{\sqrt{3}}\right)\)

Bây giờ chỉ cần viết pt (SCD) là tính được ngay khoảng cách từ H đến SCD

\(\left(SCD\right):\sqrt{3}x+y+z-\sqrt{3}=0\)

\(d\left(H\text{/}\left(SCD\right)\right)=\frac{a\sqrt{3}}{\sqrt{5}}\)

18 tháng 12 2016

Bạn ơi bạn chỉ mình cách bình thường được ko? Vì mình chưa học tọa độ hóa.

22 tháng 2 2021

+ SA⊥(ABCD)⇒SA⊥BDSA⊥(ABCD)⇒SA⊥BD (1)

+ ABCD là hình vuông ⇒AC⊥BD⇒AC⊥BD (2)

+ Từ (1) và (2) suy ra BD⊥(SAC)⇒BD⊥SCBD⊥(SAC)⇒BD⊥SC

22 tháng 2 2021
Mình không biết.
2 tháng 8 2018

Đáp án B.

Gọi O là tâm của hình vuông ABCD, nối S O ∩ B ' D ' = I . 

Và nối AI cát SC tại C’ suy ra mp (AB’D’) cắt SC tại C’.

Tam giác SAC vuông tại A, có S C 2 = S A 2 + A C 2 = 6 a 2 ⇒ S C = a 6 . 

Ta có B C ⊥ S A B ⇒ B C ⊥ A B '  và S B ⊥ A B ' ⇒ A B ' ⊥ S C . 

Tương tự A D ' ⊥ S C  suy ra  S C ⊥ ( A B ' D ' ) ≡ ( A B ' C ' D ' ) ⇒ S C ⊥ A C ' .

Mà S C ' . S C = S A 2 ⇒ S C ' S C = S A 2 S C 2 = 2 3  và S B ' S B = S A 2 S B 2 = 4 5 . 

Do đó  V S . A B ' C ' = 8 15 V S . A B C = 8 30 V S . A B C D  mà V S . A B C D = 1 3 . S A . S A B C D = 2 a 3 3 . 

Vậy thể tích cần tính là  V S . A B ' C ' D ' = 2 . V S . A B ' C ' = 16 a 3 45

15 tháng 12 2017

Đáp án C

3 tháng 4 2018

Đáp án là C

18 tháng 7 2018

Chọn A

17 tháng 7 2019

Đáp án B

5 tháng 10 2018

8 tháng 7 2019

Đáp án B

Gọi I, E, F lần lượt là trung điểm của AC, AB, HC. IE là trục đường tròn ngoại tiếp tam giác AHB, IF là trục đường tròn ngoại tiếp tam giác HKC.

=> IA = IB = IC = IH = IK

Suy ra I là tâm mặt cầu ngoại tiếp tứ diện AHKB.

Suy ra bán kính R =  2 π a 3 3