cho ba số a,b,c thỏa mãn \(0\le a,b,c\le2\)và \(a+b+c=3\)Chứng minh rằng : \(a^3+b^3+c^3\le9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a³ + b³ + c³ - 3abc = (a+b+c)(a²+b²+c² -ab-bc-ca) ; thay giả thiết a+b+c = 3 ta có:
a³+b³+c³ = 3(a²+b²+c² -ab-bc-ca + abc) (1)
* từ giả thiết 0 ≤ a, b, c ≤ 2 => (2-a)(2-b)(2-c) ≥ 0
⇔ 8 -4a-4b-4c + 2ab+2bc+2ca -abc ≥ 0 (lại thay a+b+c = 3)
⇒ abc ≤ 2ab+2bc+2ca - 4 (2)
Dấu '=' khi có 1 số = 2
thay (1) vào (2) ta có:
a³+b³+c³ ≤ 3(a²+b²+c² +ab+bc+ca - 4) = 3[(a+b+c)² - ab-bc-ca -4] = 3(5-ab-bc-ca) (3)
Mặt khác cũng từ (2) ta có: 2(ab+bc+ca) ≥ abc+4 ≥ 4
⇒ -ab-bc-ca ≤ -2 (dấu "=" khi có 1 số = 0) thay vào (3) ta có
a³+b³+c³ ≤ 3(5-ab-bc-ca) ≤ 9 (đpcm)
Mới lớp 8 nên không hiểu biết rộng về lớp 9 sai bỏ qua
Không mất tính tổng quát giả sử a lớn nhất trong các số a,b,c. Từ đó suy ra
\(3a\ge a+b+c=3\Leftrightarrow2\ge a\ge1\left(1\right)\)
Từ điều kiện \(0\le b,c\le a\le2\). ta có
\(a^3+b^3+c^3\le a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3=9\left(a-\frac{3}{2}\right)^2+\frac{27}{4}\left(2\right)\)
Mà từ \(b,c\ge0\) và \(a+b+c=3\).Lưu ý rằng khi ta có \(1\le a\le2\) từ \(\left(1\right)\) ta có: \(\left(a-\frac{3}{2}\right)^3\le\frac{1}{4}\left(3\right)\).
Vậy \(a^3+b^3+c^3\le9\left(a-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{9}{4}+\frac{27}{4}=9\)
Từ (2) và (3). Như vậy đã chứng minh xong
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=2\\b=1\\c=0\end{cases}}\)
Let \(a\ge b\ge c\)
Since \(f\left(x\right)=x^3\)is a convex function on \(\left[0,3\right]\) and \(\left(2,1,0\right)›\left(a,b,c\right)\)
By Karamata's inequality we obtain
\(9=2^3+1^3+0^2\ge a^3+b^3+c^3\)
Done! :)))
P/s:viết tiếng anh giỏi quá =))
Theo hằng đẳng thức đáng nhớ ta có :
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Leftrightarrow a^3+b^3+c^3=3\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc\)
\(\Leftrightarrow a^3+b^3+c^3=3\left(a^2+b^2+c^2-ab-bc-ca+abc\right)\left(1\right)\)
Ta lại có : \(0\le a,b,c\le2\Rightarrow\left\{{}\begin{matrix}abc\ge0\\\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow8-4a-4b-4c+2ab+2bc+2ca-abc\ge0\)
\(\Leftrightarrow2ab+2bc+2ca-4\ge abc\Leftrightarrow abc\le-4\) ( Vì \(a,b,c\ge0\) ) \(\left(2\right)\)
Thay (2) vào (1) ta được :
\(a^3+b^3+c^3\le3\left(a^2+b^2+c^2-ab-bc-ca-4\right)=3\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]=3\left(9-3\left(ab+bc+ca\right)\right)\)
Mà từ (2) ta lại có : \(2ab+2bc+2ca\ge abc+4=4\Rightarrow ab+bc+ca\ge2\Rightarrow-3\left(ab+bc+ca\right)\le-6\)
\(\Rightarrow a^3+b^3+c^3\le3\left(9-6\right)=9\)
Dấu \("="\) xảy ra khi \(a=0;b=1;c=2\) và hoán vị
Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Nên ta cần CM \(a^2+b^2+c^2+ab+bc+ac\ge a^3+b^3+c^3\)
Theo đề bài ta có
\(a\left(a-1\right)\left(a-2\right)\le0\)=> \(a^3\le3a^2-2a\)
Tương tự với b,c => \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\left(a-2\right)\left(b-2\right)\ge0\)=> \(ab\ge2\left(a+b\right)-4\)
Tương tự => \(ab+bc+ac\ge4\left(a+b+c\right)-12\)
Khi đó BĐT <=>
\(a^2+b^2+c^2+4\left(a+b+c\right)-12\ge3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
<=> \(3\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)-6\)
<=>\(\left(a-1\right)\left(a-2\right)+\left(b-1\right)\left(b-2\right)+\left(c-1\right)\left(c-2\right)\le0\)(luôn đúng với giả thiết)
Dấu bằng xảy ra khi \(\left(a,b,c\right)=\left(2;2;2\right),\left(2;2;1\right),....\)và các hoán vị
Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Nên \(BĐT\Leftrightarrow a^2+b^2+c^2+ab+bc+ca\ge a^3+b^3+c^3\)
Ta có \(a\left(a-2\right)\left(a-1\right)\le0\Leftrightarrow a^3\le3a^2-2a\)
Tương ta ta có: \(b^3\le3b^2-2b;c^3\le3c^2-2c\)
Cộng từng vế của các bđt trên: \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3\le a^2+b^2+c^2+ab+bc+ca\)
\(+2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)
Đặt \(\)\(K=2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)
Ta lại có
\(\left(a-1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le3a-2\)
Tương tự \(b^2\le3b-2;c^2\le3c-2\)
\(\Rightarrow a^2+b^2+c^2\le3\left(a+b+c\right)-6\)(1)
\(\left(a-2\right)\left(b-2\right)\ge0\Leftrightarrow ab\ge2a+2b-4\)
Tương tự \(bc\ge2b+2c-4;ca\ge2c+2a-4\)
\(\Rightarrow ab+bc+ca\ge4\left(a+b+c\right)-12\)(2)
Từ (1) và (2) suy ra \(K\le6\left(a+b+c\right)-12-2\left(a+b+c\right)\)
\(-\left[4\left(a+b+c\right)-12\right]=0\)
\(K\le0\Rightarrow a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\le a^2+b^2+c^2+ab+bc+ca\)
hay \(\text{Σ}_{cyc}a^2+\text{Σ}_{cyc}ab+3\text{Σ}_{cyc}\left(a+b\right)\ge\left(a+b+c\right)^3\)
Đẳng thức xảy ra khi \(\left(a,b,c\right)\in\left(2;2;1\right)\)và các hoán vị hoặc \(a=b=c=2\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel và bất đẳng thức AM-GM ta có :
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)( đpcm )
Đẳng thức xảy ra <=> a=b=c