Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a³ + b³ + c³ - 3abc = (a+b+c)(a²+b²+c² -ab-bc-ca) ; thay giả thiết a+b+c = 3 ta có:
a³+b³+c³ = 3(a²+b²+c² -ab-bc-ca + abc) (1)
* từ giả thiết 0 ≤ a, b, c ≤ 2 => (2-a)(2-b)(2-c) ≥ 0
⇔ 8 -4a-4b-4c + 2ab+2bc+2ca -abc ≥ 0 (lại thay a+b+c = 3)
⇒ abc ≤ 2ab+2bc+2ca - 4 (2)
Dấu '=' khi có 1 số = 2
thay (1) vào (2) ta có:
a³+b³+c³ ≤ 3(a²+b²+c² +ab+bc+ca - 4) = 3[(a+b+c)² - ab-bc-ca -4] = 3(5-ab-bc-ca) (3)
Mặt khác cũng từ (2) ta có: 2(ab+bc+ca) ≥ abc+4 ≥ 4
⇒ -ab-bc-ca ≤ -2 (dấu "=" khi có 1 số = 0) thay vào (3) ta có
a³+b³+c³ ≤ 3(5-ab-bc-ca) ≤ 9 (đpcm)
Mới lớp 8 nên không hiểu biết rộng về lớp 9 sai bỏ qua
Theo hằng đẳng thức đáng nhớ ta có :
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Leftrightarrow a^3+b^3+c^3=3\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc\)
\(\Leftrightarrow a^3+b^3+c^3=3\left(a^2+b^2+c^2-ab-bc-ca+abc\right)\left(1\right)\)
Ta lại có : \(0\le a,b,c\le2\Rightarrow\left\{{}\begin{matrix}abc\ge0\\\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow8-4a-4b-4c+2ab+2bc+2ca-abc\ge0\)
\(\Leftrightarrow2ab+2bc+2ca-4\ge abc\Leftrightarrow abc\le-4\) ( Vì \(a,b,c\ge0\) ) \(\left(2\right)\)
Thay (2) vào (1) ta được :
\(a^3+b^3+c^3\le3\left(a^2+b^2+c^2-ab-bc-ca-4\right)=3\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]=3\left(9-3\left(ab+bc+ca\right)\right)\)
Mà từ (2) ta lại có : \(2ab+2bc+2ca\ge abc+4=4\Rightarrow ab+bc+ca\ge2\Rightarrow-3\left(ab+bc+ca\right)\le-6\)
\(\Rightarrow a^3+b^3+c^3\le3\left(9-6\right)=9\)
Dấu \("="\) xảy ra khi \(a=0;b=1;c=2\) và hoán vị
Áp dụng BĐT cosi:
\(a\sqrt{1-b^2}=\sqrt{a^2\left(1-b^2\right)}\le\dfrac{a^2+1-b^2}{2}\)
Tương tự cx có: \(b\sqrt{1-c^2}\le\dfrac{b^2+1-c^2}{2}\)
\(c\sqrt{1-a^2}\le\dfrac{c^2+1-a^2}{2}\)
Cộng vế với vế \(\Rightarrow VT\le\dfrac{3}{2}\)
Dấu = xảy ra <=> \(\left\{{}\begin{matrix}a^2=1-b^2\\b^2=1-c^2\\c^2=1-a^2\end{matrix}\right.\) \(\Leftrightarrow a^2+b^2+c^2=3-\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2=\dfrac{3}{2}\) (đpcm)
Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Nên ta cần CM \(a^2+b^2+c^2+ab+bc+ac\ge a^3+b^3+c^3\)
Theo đề bài ta có
\(a\left(a-1\right)\left(a-2\right)\le0\)=> \(a^3\le3a^2-2a\)
Tương tự với b,c => \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\left(a-2\right)\left(b-2\right)\ge0\)=> \(ab\ge2\left(a+b\right)-4\)
Tương tự => \(ab+bc+ac\ge4\left(a+b+c\right)-12\)
Khi đó BĐT <=>
\(a^2+b^2+c^2+4\left(a+b+c\right)-12\ge3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
<=> \(3\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)-6\)
<=>\(\left(a-1\right)\left(a-2\right)+\left(b-1\right)\left(b-2\right)+\left(c-1\right)\left(c-2\right)\le0\)(luôn đúng với giả thiết)
Dấu bằng xảy ra khi \(\left(a,b,c\right)=\left(2;2;2\right),\left(2;2;1\right),....\)và các hoán vị
Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Nên \(BĐT\Leftrightarrow a^2+b^2+c^2+ab+bc+ca\ge a^3+b^3+c^3\)
Ta có \(a\left(a-2\right)\left(a-1\right)\le0\Leftrightarrow a^3\le3a^2-2a\)
Tương ta ta có: \(b^3\le3b^2-2b;c^3\le3c^2-2c\)
Cộng từng vế của các bđt trên: \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3\le a^2+b^2+c^2+ab+bc+ca\)
\(+2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)
Đặt \(\)\(K=2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)
Ta lại có
\(\left(a-1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le3a-2\)
Tương tự \(b^2\le3b-2;c^2\le3c-2\)
\(\Rightarrow a^2+b^2+c^2\le3\left(a+b+c\right)-6\)(1)
\(\left(a-2\right)\left(b-2\right)\ge0\Leftrightarrow ab\ge2a+2b-4\)
Tương tự \(bc\ge2b+2c-4;ca\ge2c+2a-4\)
\(\Rightarrow ab+bc+ca\ge4\left(a+b+c\right)-12\)(2)
Từ (1) và (2) suy ra \(K\le6\left(a+b+c\right)-12-2\left(a+b+c\right)\)
\(-\left[4\left(a+b+c\right)-12\right]=0\)
\(K\le0\Rightarrow a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\le a^2+b^2+c^2+ab+bc+ca\)
hay \(\text{Σ}_{cyc}a^2+\text{Σ}_{cyc}ab+3\text{Σ}_{cyc}\left(a+b\right)\ge\left(a+b+c\right)^3\)
Đẳng thức xảy ra khi \(\left(a,b,c\right)\in\left(2;2;1\right)\)và các hoán vị hoặc \(a=b=c=2\)
Đặt \(\left(a;b;c\right)=\left(x-1;y-1;z-1\right)\Rightarrow\left\{{}\begin{matrix}0\le x;y;z\le3\\x+y+z=3\end{matrix}\right.\)
Ta có: \(ab+bc+ca=\left(x-1\right)\left(y-1\right)+\left(y-1\right)\left(z-1\right)+\left(z-1\right)\left(x-1\right)\)
\(=xy+yz+zx-2\left(x+y+z\right)+3=xy+yz+zx-3\)
Do \(x;y;z\ge0\Rightarrow xy+yz+zx\ge0\)
\(\Rightarrow xy+yz+zx-3\ge-3\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị hay \(\left(a;b;c\right)=\left(-1;-1;2\right)\) và hoán vị