K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: -1<=cos2x<=1

=>3>=-3cos2x>=-3

=>7>=-3cos2x+4>=1

=>7>=y>=1

\(y_{min}=1\) khi \(cos2x=1\)

=>2x=k2pi

=>x=kpi

\(y_{max}=-1\) khi cos2x=-1

=>2x=pi+k2pi

=>x=pi/2+kpi

b: \(0< =sin^2x< =1\)

=>\(3< =sin^2x+3< =4\)

=>3<=y<=4

y min=3 khi sin^2x=0

=>sinx=0

=>x=kpi

y max=4 khi sin^2x=1

=>cos^2x=0

=>x=pi/2+kpi

c: \(y=sin2x+3\)

-1<=sin2x<=1

=>-1+3<=sin2x+3<=1+3

=>2<=y<=4

\(y_{min}=2\) khi sin 2x=-1

=>2x=-pi/2+k2pi

=>x=-pi/4+kpi

y max=4 khi sin2x=1

=>2x=pi/2+k2pi

=>x=pi/4+kpi

AH
Akai Haruma
Giáo viên
2 tháng 9 2023

a.

Tìm min:

$y=(4\sin ^2x-4\sin x+1)+2=(2\sin x-1)^2+2$
Vì $(2\sin x-1)^2\geq 0$ với mọi $x$ nên $y=(2\sin x-1)^2+2\geq 0+2=2$

Vậy $y_{\min}=2$

----------------

Mặt khác: 

$y=4\sin x(\sin x+1)-8(\sin x+1)+11$

$=(\sin x+1)(4\sin x-8)+11$

$=4(\sin x+1)(\sin x-2)+11$

Vì $\sin x\in [-1;1]\Rightarrow \sin x+1\geq 0; \sin x-2<0$

$\Rightarrow 4(\sin x+1)(\sin x-2)\leq 0$

$\Rightarrow y=4(\sin x+1)(\sin x-2)+11\leq 11$

Vậy $y_{\max}=11$

 

AH
Akai Haruma
Giáo viên
2 tháng 9 2023

b.

$y=\cos ^2x+2\sin x+2=1-\sin ^2x+2\sin x+2$

$=3-\sin ^2x+2\sin x$
$=4-(\sin ^2x-2\sin x+1)=4-(\sin x-1)^2\leq 4-0=4$

Vậy $y_{\max}=4$.

---------------------------

Mặt khác:

$y=3-\sin ^2x+2\sin x = (1-\sin ^2x)+(2+2\sin x)$

$=(1-\sin x)(1+\sin x)+2(1+\sin x)=(1+\sin x)(1-\sin x+2)$

$=(1+\sin x)(3-\sin x)$

Vì $\sin x\in [-1;1]$ nên $1+\sin x\geq 0; 3-\sin x>0$

$\Rightarrow y=(1+\sin x)(3-\sin x)\geq 0$

Vậy $y_{\min}=0$

a: \(y=\sqrt{2}sin\left(x+\dfrac{pi}{4}\right)\)

\(-1< =sin\left(x+\dfrac{pi}{4}\right)< =1\)

=>\(-\sqrt{2}< =y< =\sqrt{2}\)

\(y_{min}=-\sqrt{2}\) khi sin(x+pi/4)=-1

=>x+pi/4=-pi/2+k2pi

=>x=-3/4pi+k2pi

\(y_{max}=\sqrt{2}\) khi sin(x+pi/4)=1

=>x+pi/4=pi/2+k2pi

=>x=pi/4+k2pi

b: \(y=sinx\cdot cos\left(\dfrac{pi}{3}\right)+cosx\cdot sin\left(\dfrac{pi}{3}\right)+3\)

\(=sin\left(x+\dfrac{pi}{3}\right)+3\)

-1<=sin(x+pi/3)<=1

=>-1+3<=sin(x+pi/3)+3<=4

=>2<=y<=4

y min=2 khi sin(x+pi/3)=-1

=>x+pi/3=-pi/2+k2pi

=>x=-5/6pi+k2pi

y max=4 khi sin(x+pi/3)=1

=>x+pi/3=pi/2+k2pi

=>x=pi/6+k2pi

c: \(y=2\cdot\left(sin2x\cdot\dfrac{\sqrt{3}}{2}-cos2x\cdot\dfrac{1}{2}\right)\)

\(=2sin\left(2x-\dfrac{pi}{6}\right)\)

-1<=sin(2x-pi/6)<=1

=>-2<=y<=2

y min=-2 khi sin(2x-pi/6)=-1

=>2x-pi/6=-pi/2+k2pi

=>2x=-1/3pi+k2pi

=>x=-1/6pi+kpi

y max=2 khi sin(2x-pi/6)=1

=>2x-pi/6=pi/2+k2pi

=>2x=2/3pi+k2pi

=>x=1/3pi+kpi

9 tháng 8 2023

Ta có: 

\(C=\sqrt{-x^2+6x}\) 

Mà: \(\sqrt{-x^2+6x}\ge0\) 

Dấu "=" xảy ra khi:

\(\sqrt{-x^2+6x}=0\)

\(\Leftrightarrow\sqrt{-x\left(x-6\right)}=0\)

\(\Leftrightarrow-x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Vậy: \(C_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

9 tháng 8 2023

\(D=\sqrt{6x-2x^2}\)

Mà: \(\sqrt{6x-2x^2}\ge0\)

Dấu "=" xảy ra khi:

\(\sqrt{6x-2x^2}=0\)

\(\Leftrightarrow\sqrt{2x\left(3-x\right)}=0\)

\(\Leftrightarrow2x\left(3-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy: \(D_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

23 tháng 9 2017

\(A=\left(x^2+6x+9\right)-9\)

\(=\left(x+3\right)^2-9\)

\(\Rightarrow A\ge-9\)

Dấu = xảy ra khi\(x+3=0\Rightarrow x=-3\)

13 tháng 7 2017

A = -(x2+6x-11)

=-(x2+6x+9-20)

=-(x+3)2 + 20 \(\le20\)

vậy min A = 20

dấu = xảy ra khi x = -3

câu B bạn xem có nhầm đề hay thiếu gì k thì bổ sung nhé

13 tháng 7 2017

à tớ nhầm 1 chỗ, là max A = 20

18 tháng 9 2023

a) \(A=\sqrt[]{x^2-2x+5}\)

\(\Leftrightarrow A=\sqrt[]{x^2-2x+1+4}\)

\(\Leftrightarrow A=\sqrt[]{\left(x+1\right)^2+4}\)

mà \(\left(x+1\right)^2\ge0,\forall x\in R\)

\(A=\sqrt[]{\left(x+1\right)^2+4}\ge\sqrt[]{4}=2\)

Dấu "=" xảy ra khi và chỉ khi \(x+1=0\Leftrightarrow x=-1\)

Vậy \(GTNN\left(A\right)=2\left(khi.x=-1\right)\)

b) \(B=5-\sqrt[]{x^2-6x+14}\)

\(\Leftrightarrow B=5-\sqrt[]{x^2-6x+9+5}\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\left(1\right)\)

Ta có : \(\left(x-3\right)^2\ge0,\forall x\in R\)

\(\Leftrightarrow\left(x-3\right)^2+5\ge5,\forall x\in R\)

\(\Leftrightarrow\sqrt[]{\left(x-3\right)^2+5}\ge\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow-\sqrt[]{\left(x-3\right)^2+5}\le-\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\le5-\sqrt[]{5},\forall x\in R\)

Dấu "=" xả ra khi và chỉ khi \(x-3=0\Leftrightarrow x=3\)

Vậy \(GTLN\left(B\right)=5-\sqrt[]{5}\left(khi.x=3\right)\)

28 tháng 1 2020

a) Ta có : \(A=-6x+x^2+11\)

\(\Rightarrow A=\left(x^2-6x+9\right)+2\)

\(\Rightarrow A=\left(x-3\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy \(minA=2\Leftrightarrow x=3\)

b) \(B=-1+2x^x+10x\)

\(\Rightarrow\)Tớ đang thắc mắc cái chỗ 2xx :)))