cho hình bình hành ABCD ,AB=2AD, góc D=70 độ. vẽ BH vuông góc với AD(H thuộc AD). Gọi M,N lần lượt là trung điểm của CD và AB. a, CM tứ giác ANMD là h thoi. b,chứng minh tam giác HNM cân. c, tính góc HMC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ANMD có
AN//MD
AN=MD
Do đó: ANMD là hình bình hành
mà AN=AD
nên ANMD là hình thoi
a: Xét tứ giác ANMD có
AN//MD
AN=MD
Do đó: ANMD là hình bình hành
mà AN=AD
nên ANMD là hình thoi
b: Đề sai rồi bạn
a: Xét tứ giác ANMD có
AN//MD
AN=MD
AN=AD
=>ANMD là hình thoi
Xét tứ giác BCMN co
BN//CM
BN=CM
BN=BC
=>BCMN là hình thoi
b: Xét ΔNCD có
NM là trung tuyến
NM=CD/2
=>ΔNCD vuông tại N
c: Xét ΔAHD vuông tại H và ΔCND vuông tại N có
góc ADH=góc CDN
=>ΔAHD đồng dạng với ΔCND
a: Xét ΔADH vuông tại H và ΔABH vuông tại H có
góc HAD=góc HBA
Do đó: ΔADH đồng dạng với ΔBAH
Suy ra: HA/HB=HD/HA
hay \(HA^2=HD\cdot HB\)
b: \(BD=9+16=25cm\)
\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)
AB=20cm
c: Xét ΔAHB có
K là trung điểm của AH
M là trung điểm của HB
Do đó: KM là đường trung bình
=>KM//AB và KM=AB/2
=>KM//DN và KM=DN
=>DKMN là hình bình hành
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//PC và MN=PC
=>NCPM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MP
hay góc BMP=90 độ
Bài 2 :
a, Xét tam giác ABC ta có :
D là trung điểm AB
M là trung điểm CB
=)) DM là đường TB tam giác ABC
=)) DM // AC hay DM // AE (1)
Ta có : E là trung điểm AC
M là trung điểm BA
=)) EM là đường TB tam giác ABC
=)) EM // AB hay EM // AD (2)
Từ 1;2 =)) Tứ giác ADME là hình bình hành
b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM
=)) AM đồng thời là tia phân giác của ^A
Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)
=)) Tứ giác ADME là hình thoi
c, Nếu tam giác ABC vuông tại A => ^A = 90^0
Xét hình bình hành ADME có ^A =90^0
=)) Tứ giác ADME là hình chữ nhật
tự vẽ hình nhé .
a) tứ giác ANMD có :
AN = 1/2 AB ; DM = 1/2 CD
\(\Rightarrow\)AN = DM (AB = CD )
mà AB // CD \(\Rightarrow\)AN // DM
\(\Rightarrow\)ANMD là hbh .
mà AN = AD ( = 1/2 AB ) \(\Rightarrow\)ANMD là hình thoi .
b) \(\Delta\)vuông AHB có :
HN là trung tuyến của AB . \(\Rightarrow\)HN = 1/2 AB
và MN = 1/2 AB ( MN = AN )
\(\Rightarrow\)\(\Delta\)HNM cân tại N .
thấy xinh thì