K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔEKD vuông tại K và ΔEKF vuông tại K có

ED=EF

EK chung

Do đó: ΔEKD=ΔEKF

=>KD=KF

b: Xét ΔDIK có \(\widehat{DIE}\) là góc ngoài tại I

nên \(\widehat{DIE}=\widehat{IKD}+\widehat{IDK}=90^0+\widehat{IDK}>90^0\)

Xét ΔDIE có \(\widehat{DIE}>90^0\)

nên DE là cạnh lớn nhất trong ΔDIE

=>DE>DI

16 tháng 5 2022

câu a bị lx

16 tháng 5 2022

lên nhanh thế cj

 

30 tháng 4 2019

a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)

hay\(5^2=3^2+DF^2\)

\(\Rightarrow DF^2=5^2-3^2=25-9=16\)

\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)

Ta có:\(DE=3cm\)

\(DF=4cm\)

\(EF=5cm\)

\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)

b)Xét\(\Delta DEF\)\(\Delta DKF\)có:

\(DE=DK\)(\(D\)là trung điểm của\(EK\))

\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)

\(DF\)là cạnh chung

Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)

\(\Rightarrow EF=KF\)(2 cạnh t/ứ)

Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)

Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)

c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

Ta lại có:​\(DF\)cắt\(KI\)tại\(G\)

mà​\(DF\)​là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)

\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))

\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)

Vậy\(GF\approx2,7cm\)

https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc

a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)

Mặt khác dễ dàng chứng minh được EDFˆ=60o

Vì vậy tam giác DEF là tam giác đều

b)ΔEDK=ΔFDT(hai cạnh góc vuông)

nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D

c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o

AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)

AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)

Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều

d)Ta có AF=AC-FC=CM-FC=m-n.

a: Xét ΔDKE và ΔDHF có

DK=DH

góc D chung

DE=DF

=>ΔDKE=ΔDHF

=>KE=HF

b: Xét ΔOHE và ΔOKF có

góc OHE=góc OKF

HE=KF

góc OEH=góc OFK

=>ΔOHE=ΔOKF

c: DE=DF

OE=OF

=>DO là trung trực của EF

=>DO vuông góc EF

Bài 1: Cho tam giác DEF cân tại D. Trên cạnh DE và DF lần lượt lấy hai điểm H và K sao cho DH =DK. Gọi giao điểm của EK và FH là O. Chứng minh rằng a)        EK = FH b)         DHOE = DKOF c)       DO vuông góc với EF Bài 2: Cho tam giác nhọn ABC có AB < AC , đường cao AD. Trên đoạn DC lấy điểm E sao cho DB = DE a)   Chứng minh tam giác ABE cân; b)        Từ E kẻ EF vuông góc với AC (F thuộc AC). Từ C kẻ CK vuông góc với AE (K...
Đọc tiếp

Bài 1: Cho tam giác DEF cân tại D. Trên cạnh DE và DF lần lượt lấy hai điểm H và K sao cho DH =DK. Gọi giao điểm của EK và FH là O. Chứng minh rằng

a)        EK = FH

b)         DHOE = DKOF

c)       DO vuông góc với EF

Bài 2: Cho tam giác nhọn ABC có AB < AC , đường cao AD. Trên đoạn DC lấy điểm E sao

cho DB = DE

a)   Chứng minh tam giác ABE cân;

b)        Từ E kẻ EF vuông góc với AC (F thuộc AC). Từ C kẻ CK vuông góc với AE (K thuộc AE). Chứng minh rằng ba đường thẳng AD, EF, CK đồng quy tại một điểm.

Bài 3: Cho tam giác đều DEF. Tia phân giác của góc E cắt cạnh DF tại M. Qua D kẻ đường thẳng vuông góc với DE, đường thẳng này cắt tia EM tại N và cắt tia EF tại P. Chứng minh rằng

a) DDNF cân

b) NF vuông góc với EF

c) DDEP cân

Bài 4: Cho tam giác DEF cân tại D. Gọi M, N lần lượt là trung điểm của DF và DE. Kẻ DH vuông góc với EF

a)  Chứng minh EM = FN DEM = DFN

0