Tìm x biết:
a) \(\frac{5}{6}x\) - \(\frac{3}{8}x\)- 10 = z : 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}x + \left( { - \frac{1}{5}} \right) = \frac{{ - 4}}{{15}}\\x = \frac{{ - 4}}{{15}} + \frac{1}{5}\\x = \frac{{ - 4}}{{15}} + \frac{3}{{15}}\\x = \frac{{ - 1}}{{15}}\end{array}\)
Vậy \(x = \frac{{ - 1}}{{15}}\).
b)
\(\begin{array}{l}3,7 - x = \frac{7}{{10}}\\x = 3,7 - \frac{7}{{10}}\\x = \frac{{37}}{{10}} - \frac{7}{{10}}\\x=\frac{30}{10}\\x = 3\end{array}\)
Vậy \(x = 3\).
c)
\(\begin{array}{l}x.\frac{3}{2} = 2,4\\x.\frac{3}{2} = \frac{{12}}{5}\\x = \frac{{12}}{5}:\frac{3}{2}\\x = \frac{{12}}{5}.\frac{2}{3}\\x = \frac{8}{5}\end{array}\)
Vậy \(x = \frac{8}{5}\)
d)
\(\begin{array}{l}3,2:x = - \frac{6}{{11}}\\\frac{{16}}{5}:x = - \frac{6}{{11}}\\x = \frac{{16}}{5}:\left( { - \frac{6}{{11}}} \right)\\x = \frac{{16}}{5}.\frac{{ - 11}}{6}\\x = \frac{{ - 88}}{{15}}\end{array}\)
Vậy \(x = \frac{{ - 88}}{{15}}\).
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{180}{12}=15\)
=>x=45; y=60; z=75
b:
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y-z}{3+4-5}=\dfrac{8}{2}=4\)
=>x=12; y=16; z=20
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y + z}}{{3 + 4 + 5}} = \frac{{180}}{{12}} = 15\)
Vậy x = 3 . 15 = 45; y = 4 . 15 = 60; z = 5 . 15 = 75
b) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y - z}}{{3 + 4 - 5}} = \frac{8}{2} = 4\)
Vậy x = 3. 4 = 12; y = 4.4 = 16; z = 5.4 = 20
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
a)
\(\begin{array}{l}{(1,2)^3}.x = {(1,2)^5}\\x = {(1,2)^5}:{(1,2)^3}\\x = {(1,2)^2}\\x = 1,44\end{array}\)
Vậy \(x = 1,44\).
b)
\(\begin{array}{l}{\left( {\frac{2}{3}} \right)^7}:x = {\left( {\frac{2}{3}} \right)^6}\\x = {\left( {\frac{2}{3}} \right)^7}:{\left( {\frac{2}{3}} \right)^6}\\x = \frac{2}{3}\end{array}\)
Vậy \(x = \frac{2}{3}\).
a; \(\dfrac{-x}{4}\) = \(\dfrac{-2}{x}\)
-\(x.x\) = -2.4
-\(x^2\) = -8
\(x^2\) = 8
\(\left[{}\begin{matrix}x=-\sqrt{8}\\x=\sqrt{8}\end{matrix}\right.\)
Vậy \(x\in\) {-\(\sqrt{8}\); \(\sqrt{8}\)}
a)
\(\begin{array}{l}x - \left( { - \frac{7}{9}} \right) = - \frac{5}{6}\\x + \frac{7}{9} = - \frac{5}{6}\\x = - \frac{5}{6} - \frac{7}{9}\\x = - \frac{{15}}{{18}} - \frac{{14}}{{18}}\\x = \frac{{ - 29}}{{18}}\end{array}\)
Vậy \(x = \frac{{ - 29}}{{18}}\).
b)
\(\begin{array}{l}\frac{{15}}{{ - 4}} - x = 0,3\\x = \frac{{15}}{{ - 4}} - 0,3\\x = - 3,75 - 0,3\\x = - 4,05\end{array}\)
Vậy \(x = - 4,05\).
a) \(1\frac{2}{7} = 1 + \frac{2}{7} = \frac{9}{2}\)
\(\begin{array}{l}x:1\frac{2}{7} = - 3,5\\x:\frac{9}{7} = - \frac{7}{2}\\x = - \frac{7}{2}.\frac{9}{7}\\x = - \frac{9}{2}\end{array}\)
b) \(0,4.x - \frac{1}{5}.x = \frac{3}{4}\)
\(\begin{array}{l}\frac{2}{5}.x - \frac{1}{5}.x = \frac{3}{4}\\\left( {\frac{2}{5} - \frac{1}{5}} \right).x = \frac{3}{4}\\\frac{1}{5}.x = \frac{3}{4}\\x = \frac{3}{4}:\frac{1}{5}\\x = \frac{3}{4}.5\\x = \frac{{15}}{4}\end{array}\)
a./ \(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=\frac{x-y+z}{5-7+4}=\frac{-10}{2}=-5\)
\(\Rightarrow x=-25;y=-35;z=-20\)
b./ \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{-7}=\frac{x+y-z}{5-4-\left(-7\right)}=\frac{-40}{6}=-5\)
\(\Rightarrow x=-25;y=20;z=35\)