Tìm x là số nguyên sao cho A = \(x\left(x-1\right)\left(x-7\right)\left(x-8\right)\) là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko bt dung ko >:
TH1: (x-2018).(x-2019).(x-2020) khac 0
ta co: (x-2018).(x-2019).(x-2020) la 3 so lien tiep => (x-2018).(x-2019).(x-2020) chia het cho 3
ma (x-2018).(x-2019) la 2 so lien tiep => (x-2018).(x-2019).(x-2020) la so chan
Vi ko co SCP nao la so chan ma chia het cho 3 => truong hop nay loai
TH2: (x-2018).(x-2019).(x-2020) =0
=> x=2019
p/s: ko chac, sai dung nem da--ko can xay biet thu :(
\(p=\left[\left(x+5\right).\left(x+11\right)\right].\left[\left(x+7\right).\left(x+9\right)\right]+16=\)
\(=\left(x^2+16x+55\right)\left(x^2+16x+63\right)+16=\)
\(=\left(x^2+16x\right)^2+118.\left(x^2+16x\right)+3481=\)
\(=\left(x^2+16x\right)^2+2.\left(x^2+16x\right).59+59^2=\)
\(=\left[\left(x^2+16x\right)+59\right]^2\) là một số chính phương
1, để \(\dfrac{2x+1}{x+3}\) là 1 số nguyên
= > 2x + 1 chia hết cho x + 3 ( x thuộc Z và x \(\ne3\) )
= > 2 ( x + 3 ) - 5 chia hết cho x + 3
=> -5 chia hết cho x + 3
hay x + 3 thuộc Ư(-5 ) \(\in\left\{\pm1;\pm5\right\}\)
Đến đây em tự tìm các giá trị của x
2, Tương tự câu 1, x - 1 chia hết cho x + 5 ( x thuộc Z và x khác - 5 )
= > - 6 chia hết cho x + 5
= > \(x+5\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
....
3, ( x - 1 ) ( y - 3 ) = 7
x,y thuộc Z = > x - 1 ; y - 3 thuộc Ư(7)
và ( x - 1 )( y - 3 ) = 7
( 1 ) \(\left\{{}\begin{matrix}x-1=1\\y-3=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=10\end{matrix}\right.\)
(2) \(\left\{{}\begin{matrix}x-1=7\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
( 3) \(\left\{{}\begin{matrix}x-1=-1\\y-3=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\)
( 4 ) \(\left\{{}\begin{matrix}x-1=-7\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\)
Từ ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) các cặp giá trị ( x,y ) nguyên cần tìm là ....
Ta có \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
\(=\left(x^2+5xy+5y^2-y^2\right)\left(x^2+5xy+5y^2+y^2\right)+y^4\)
\(=\left(x^2+5xy+5y^2\right)^2\) là số chính phương. \(\Rightarrowđpcm\)
\(a)\) \(A=x\left(x^3-1\right)-x^2\left(x^2+1\right)-5\left(x-1\right)\)
\(A=x^4-x-x^4-x^2-5x+5\)
\(A=-x^2-6x+5\)
Vậy \(A=-x^2-6x+5\)
\(B=4x\left(x+2\right)-8\left(x+4\right)-4\)
\(B=4x^2+8x-8x-32-4\)
\(B=4x^2-36\)
Vậy \(B=4x^2-36\)
\(b)\) Ta có :
\(A=-x^2-6x+5\)
\(-A=x^2+6x-5\)
\(-A=\left(x^2+6x+9\right)-14\)
\(-A=\left(x+3\right)^2-14\ge-14\)
\(A=-\left(x+3\right)^2+14\le14\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+3\right)^2=0\)
\(\Leftrightarrow\)\(x+3=0\)
\(\Leftrightarrow\)\(x=-3\)
Vậy GTLN của \(A\) là \(14\) khi \(x=-3\)
Chúc bạn học tốt ~
\(A=\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{3\sqrt{x}+1}{x-1}\)
\(A=\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)
Câu hỏi của hyun mau - Toán lớp 8 - Học toán với OnlineMath nhé