K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3

Gọi \(ƯCLN\left(2n+3;4n+8\right)=d\)   \((d\in \mathbb{N^*})\)

Khi đó: \(\left\{{}\begin{matrix}2n+3 ⋮ d\\4n+8 ⋮ d\end{matrix}\right. \Rightarrow\left\{{}\begin{matrix}2\left(2n+3\right) ⋮ d\\4n+8 ⋮ d\end{matrix}\right. \Rightarrow\left\{{}\begin{matrix}4n+6 ⋮ d\\4n+8 ⋮ d\end{matrix}\right.\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right) ⋮ d\)

\(\Rightarrow4n+8-4n-6⋮d\Rightarrow2⋮d\)

\(\Rightarrow d\inƯ\left(2\right)\Rightarrow d\in\left\{1;2;-1;-2\right\}\)

Mà \(d\in\mathbb{N^*}\Rightarrow d\in\{1;2\}\) (1)

Lại có: \(\begin{cases} 2n+3 \text{ lẻ với mọi } n\\ 2n+3\vdots d \end{cases}\Rightarrow d \text{ lẻ }\)(2)

Từ (1) và (2) \(\Rightarrow d=1\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)

\(\Rightarrow\dfrac{2n+3}{4n+8}\) là phân số tối giản với mọi số tự nhiên n

NV
18 tháng 3

Gọi \(d=ƯC\left(2n+3;4n+8\right)\) với d nguyên dương

\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-2.\left(2n+3\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\) (1)

Lại có \(2n+3⋮d\) mà \(2n+3\) luôn lẻ

\(\Rightarrow d\) lẻ (2)

Từ (1),(2) \(\Rightarrow d=1\)

\(\Rightarrow2n+3\) và \(4n+8\) nguyên tố cùng nhau với mọi n tự nhiên

\(\Rightarrow\dfrac{2n+3}{4n+8}\) là phân số tối giản với mọi số tư nhiên n

28 tháng 1 2022

Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*) 

\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)

Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)

\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)

Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

28 tháng 1 2022

a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 là số lẻ nên

\(\Rightarrow d=1\left(đpcm\right)\)

c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

12 tháng 4 2023

Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )

n +1 = 2n + 2 (1) ; 2n+3*)   (2)

Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1

vậy ta có đpcm 

gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )

3n +2 = 15 n + 10 (1)  ; 5n + 3 =15n + 9 (2)

lấy (!) - (2)  ta được  15n + 10 - 15n - 9 = 1:d => d = 1

Vậy ta có đpcm 

2 tháng 6 2018

Gợi Ư CLN\(\left(2n+3;4n+8\right)=d\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\Rightarrow2.\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow d=1;2\)

\(+d=2\Rightarrow2n+3⋮2\)

Mak 2n+3 ko chia hết cho 2

\(\Rightarrow d\ne2\)

\(\Rightarrow d=1\)

\(\Rightarrowđpcm\)

11 tháng 6 2015

a)Gọi d là ƯCLN(n+1;2n+3)

=>2n+3 chia hết cho d

n+1 chia hết cho d

=>(2n+3)-(n+1)=n+2 chia hết cho d

Do n+1 và n+2 là 2 số nguyên liên tiếp mà d là ước chung của 2 số đó => d=1

=>2n+3 và n+1 là 2 số nguyên tố cùng nhau => phân số \(\frac{n+1}{2n+3}\) tối giản

b) làm tương tự cũng xét hiệu như thế nha!

26 tháng 6 2018

a,

gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:

\(\text{(2n+3)-(n-1) ⋮d}\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow2n-2n+3-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n

16 tháng 8 2018

Giả sử phân số sau chưa tối giản

\(\Rightarrow2n+3⋮d;4n+8⋮d\left(d\in N;d>1\right)\)

\(2n+3⋮d\Rightarrow4n+6⋮d\)

\(\Rightarrow4n+8-4n-6⋮d\)

\(\Rightarrow2⋮d\)

Vậy d có thể = 2 

Vậy p/s sau vẫn có thể tối giản đc

16 tháng 8 2018

Giả sử ƯCLN  (2n+3;4n+8)=d

\(\Rightarrow4n+8⋮d\)\(4n+8=2\left(2n+4\right)\)\(\Rightarrow2n+4⋮d\)

\(\Rightarrow d=2n+4-\left(2n+3\right)\)\(=2n+4-2n-3\)\(=1\)

Do d=1 thì \(\frac{2n+3}{4n+8}\)là số tối giản với bất kì  số tư nhiên n

Chú bạn hok tốt

26 tháng 7 2015

chung minh 2 cai do co hieu la 1

giai dc ko

12 tháng 2 2018

Gọi d là ƯCLN của 2n+3 và 4n+8, ta có:
(4n+8)-(2n+3) chia hết cho d
4n+8-2(2n+3) chia hết cho d
4n+8-4n-6 chia hết cho d
4n-4n+8-6 chia hết cho d
2 chia hết cho d => d=2
nhưng vì 2n+3 lẻ nên d là số lẻ => d=1
vậy 2n+3/4n+8 là 2 phân số tối giản

23 tháng 7 2016

a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)

=> n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n+1; 2n+3) = 1

=> n + 1 và 2n + 3 là 2 số nguyên tố cùng nhau

Câu b lm tương tự

23 tháng 2 2016

Gọi UCLN(2n + 3; 4n + 5) là d (d thuộc N*)

=> 2n + 3 chia hết cho d => 4n + 6 chia hết cho d => 4n + 5 + 1 chia hết cho d

và 4n + 5 chia hết cho d

=> 1 chia hết cho d

=> d = 1 (Vì d thuộc N*)

=> UWCLN(2n + 3; 4n + 5) = 1

=> 2n + 3/4n + 5 là phân số tối giản với mọi số tự nhiên n

Vậy,........