Cho tam giác ABC vuông tại A (AB < AC). Gọi I là trung điểm của cạnh AC. Đường thẳng qua I vuông góc với BC, cắt đường thẳng vuông góc AC tại C ở E. Chứng minh rằng AE vuông góc với BI.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của 2 tia EC và BI là F, nối FA.
Xét \(\Delta\)BAI và \(\Delta\)FCI có: AI=CI; ^BAI = ^FCI; ^AIB = ^CIF => \(\Delta\)BAI=\(\Delta\)FCI (g.c.g)
=> AB=CF (2 cạnh tương ứng).
Ta có: AB vuông AC; CE vuông AC => AB // CE hay AB // CF
Xét tứ giác ABCF: AB // CF; AB=CF => Tứ giác ABCF là hình bình hành
=> AF // BC. Mà EI vuông BC nên EI vuông AF.
Xét \(\Delta\)AEF: AC vuông EF; EI vuông AF; điểm I thuộc AC => I là trực tâm \(\Delta\)AEF
=> FI vuông AE. Lại có: Tứ giác ABCF là hình bình hành; I là trung điểm đường chéo AC
=> 3 điểm F;I;B thẳng hàng. Vậy khi FI vuông AE thì BI cũng vuông AE (đpcm).
Gọi D là giao điểm của AB và IE
\(\Delta\)BDC có hai đường cao DI và CA cắt nhau tại I nên I là trực tâm của \(\Delta\)BDC
=> BI vuông góc CD (1)
Xét \(\Delta\)IAD và \(\Delta\)ICE có:
^IAD = ^ICE ( = 900)
IA = IC
^AID = ^CIE (đối đỉnh)
Do đó \(\Delta\)IAD = \(\Delta\)ICE (g.c.g)
=> ID = IE (hai cạnh tương ứng)
Xét \(\Delta\)AIE và \(\Delta\)CID có:
AI = CI (gt)
^AIE = ^CID (đối đỉnh)
DI = EI (cmt)
Do đó \(\Delta\)AIE = \(\Delta\)CID (c.g.c)
=> ^IAE = ^ICD (hai góc tương ứng)
Mà hai góc này ở vị trí slt nên AE //CD (2)
Từ (1) và (2) suy ra BI vuông góc AE (đpcm)
bạn vẽ hình chưa??? vẽ chuẩn xác là sẽ vuông
còn mình cần cách chứng minh kia
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>DA=DE
=>ΔDAE cân tại D
=>góc DAE=góc DEA
c: BA=BE
DA=DE
=>BD là trung trực của AE
Gọi O là giao điểm của AE và BI.
Do I là trung điểm của AC nên AI = IC.
Gọi H là hình chiếu của I lên BC.
Do HI vuông góc với BC nên tam giác BHI và CHI là các tam giác vuông cân tại I.
Trong tam giác BHI, ta có $$BH^2 + IH^2 = BI^2$$.
Trong tam giác CHI, ta có $$CH^2 + IH^2 = CI^2$$.
Cộng ta được $$BH^2 + CH^2 + 2IH^2 = BI^2 + CI^2$$.
Nhưng $$BH + CH = BC$$ và $$BI^2 + CI^2 = BC^2$$ (do tam giác BIC là tam giác vuông tại I), nên ta có $$BC^2 + 2IH^2 = BC^2$$.
Điều này chỉ ra rằng $$IH = 0$$, tức là I trùng với H.
Do I trùng với H, điểm I nằm trên BC. Vì vậy, đường thẳng AE (đường thẳng vuông góc với BC tại E) sẽ vuông góc với BI tại I.
Vậy AE vuông góc với BI.
Gọi \(F\) là giao điểm của \(AB\) và \(EI\)
Xét \(\Delta IAF\) và \(\Delta ICE\)
có: \(\widehat{IAF}=\widehat{ICE}=90^o\left(gt\right)\)
\(IA=IC\left(gt\right)\)
\(\widehat{AIF}=\widehat{CIE}\) (đối đỉnh)
\(\Rightarrow\Delta IAF=\Delta ICE\left(g-c-g\right)\)
\(\Rightarrow IF=IE\) (hai cạnh tương ứng)
Xét tứ giác \(AFCE\)
có: \(IA=IC\left(gt\right)\)
\(IF=IE\left(cmt\right)\)
\(\Rightarrow\) Tứ giác \(AFCE\) là hình bình hành
\(\Rightarrow AE//FC\left(1\right)\)
Xét \(\Delta BFC\)
có: \(CI\perp BF\left(gt\right)\)
\(FI\perp BC\left(gt\right)\)
\(\Rightarrow I\) là trực tâm của \(\Delta BFC\)
\(\Rightarrow BI\perp FC\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow AE\perp BI\left(đpcm\right)\)