K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

\(9x^2-6xy+2y^2+1\)

\(=\left(3x\right)^2-2\cdot3x\cdot y+y^2+y^2+1\) 

\(=\left(3x+y\right)^2+y^2+1\)  

ta có \(\left(3x+y\right)^2\ge0\forall x,y\)

\(y^2\ge0\forall y\)

\(\Rightarrow\left(3x+y\right)^2+y^2+1>0\forall x,y\)

Bài 1: 

a) Ta có: \(A=-x^2-4x-2\)

\(=-\left(x^2+4x+2\right)\)

\(=-\left(x^2+4x+4-2\right)\)

\(=-\left(x+2\right)^2+2\le2\forall x\)

Dấu '=' xảy ra khi x=-2

b) Ta có: \(B=-2x^2-3x+5\)

\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)

c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)

\(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9\le9\forall x\)

Dấu '=' xảy ra khi x=-1

Bài 2: 
a) Ta có: \(=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)

b) Ta có: \(B=9x^2-6xy+2y^2+1\)

\(=9x^2-6xy+y^2+y^2+1\)

\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)

c) Ta có: \(E=x^2-2x+y^2-4y+6\)

\(=x^2-2x+1+y^2-4y+4+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)

12 tháng 10 2020

\(A=2x^2-20x+7=2\left(x^2-10x+25\right)-43=2\left(x-5\right)^2-43\ge-43\left(\forall x\right)\)

=> Chưa thể khẳng định A dương

\(B=9x^2-6xy+2y^2+1\)

\(B=\left(9x^2-6xy+y^2\right)+y^2+1\)

\(B=\left(3x-y\right)^2+y^2+1\ge1>0\left(\forall x\right)\)

=> đpcm

\(C=x^2-2x+y^2+4y+6\)

\(C=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)

\(C=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\left(\forall x\right)\)

=> đpcm

\(D=x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\ge1>0\left(\forall x\right)\)

=> đpcm

13 tháng 7 2021

\(a.\)

\(A=9x^2-6xy+2y^2+1\)

\(A=\left(3x\right)^2-2\cdot3x\cdot y+y^2+y^2+1\)

\(A=\left(3x-y\right)^2+\left(y^2+1\right)\ge0\)

\(b.\)

\(B=x^2-2x+y^2+4y+6\)

\(B=x^2-2x+1+y^2+4y+4+1\)

\(B=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

\(c.\)

\(C=x^2-2x+2\)

\(C=x^2-2x+1+1\)

\(C=\left(x-1\right)^2+1\ge1\)

13 tháng 7 2021

a) A=9x2-6xy+2y2+1

    A=(3x)2-2.3x.y+y2+y2+1

    A=(3x-y)2+(y2+1)≥0

Câu b, c tương tự câu a

 

a: Sửa đề: 1/4x+x^2+2

x^2+1/4x+2

=x^2+2*x*1/8+1/64+127/64

=(x+1/8)^2+127/64>=127/64>0 với mọi x

=>ĐPCM

b: 2x^2+3x+1

=2(x^2+3/2x+1/2)

=2(x^2+2*x*3/4+9/16-1/16)

=2(x+3/4)^2-1/8 

Biểu thức này ko thể luôn dương nha bạn

c: 9x^2-12x+5

=9x^2-12x+4+1

=(3x-2)^2+1>=1>0 với mọi x

d: (x+2)^2+(x-2)^2

=x^2+4x+4+x^2-4x+4

=2x^2+8>=8>0 với mọi x

1 tháng 8 2023

Mình cảm ơn nha

 

18 tháng 9 2023

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

6 tháng 8 2016

a)

2x2+2x+1

=(x+1)2+x2

(x+1)luôn lớn hơn hoặc =0 

dấu "=" xảy ra khi x=-1. mà với x=-1 thì x2=1 => biểu thức trên =1

x2 luôn lớn hơn hoặc =0

dấu "=" xảy ra khi x=0=> (x+1)2=1 => biểu thức trên =1

vậy biểu thức này có giá trị dương ( >0 )  với mọi giá trị của biến

b)9x2-6x+2

=(3x+1)+1

ta có: (3x+1)2 luôn lớ hơn hoặc =0

=> (3x+1)2+1 luôn lớn hơn hoặc =1

=> (3x+1)^2+1 luôn dương với mọi giá trị của biến

 

6 tháng 8 2016

a) \(2x^2+2x+1=2\left(x^2+x+\frac{1}{2}\right)=2\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\right]=\frac{1}{2}+2\left(x+\frac{1}{2}\right)^2\)

Vì: \(2\left(x+\frac{1}{2}\right)^2\ge0\)  với mọi x

=> \(\frac{1}{2}+2\left(x+\frac{1}{2}\right)^2>0\)

Vậy biểu thức trên luôn luôn dương với mọi giá trị của biến

b) \(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\)

Vì: \(\left(3x-1\right)^2\ge0\)  với mọi giá trị của x

=> \(\left(3x-1\right)^2+1>0\)

vậy biểu thức trên luôn luôn dương với mọi giá trị của x

9 tháng 8 2018

a)(3x-1)^2=1>0

b)(x+1/2)^2=3/4>0

c)1/2[(2x+1)^2+1]>0

9 tháng 8 2018

a﴿﴾3x‐1﴿^2=1>0

b﴿﴾x+1/2﴿^2=3/4>0

c﴿1/2[﴾2x+1﴿^2+1]>0

17 tháng 9 2021

a)\(A=x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

b) \(B=2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)