Cho các số a,b thỏa mãn : a100 + b100 = a101 + b101 = a102 + b102. Hãy tính giá trị biểu thức P = a2004 + b2004
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(a^{100}+b^{100}\right)\cdot ab=a^{101}\cdot b+b^{101}\cdot a\)
\(\left(a^{101}+b^{101}\right)\cdot\left(a+b\right)=a^{102}+a^{101}\cdot b+b^{101}\cdot a+b^{102}\)
Do đó: \(\left(a^{101}+b^{101}\right)\left(a+b\right)-\left(a^{100}+b^{100}\right)\cdot ab\)
\(=a^{102}+b\cdot a^{101}+a\cdot b^{101}+b^{102}-a^{101}\cdot b-b^{101}\cdot a\)
\(=a^{102}+b^{102}\)
Kết hợp đề bài, ta có:
\(\left(a^{102}+b^{102}\right)\left(a+b\right)-\left(a^{102}+b^{102}\right)\cdot ab=a^{102}+b^{102}\)
\(\Leftrightarrow a+b-ab=1\)
\(\Leftrightarrow a+b-ab-1=0\)
\(\Leftrightarrow\left(a-1\right)+b\left(1-a\right)=0\)
\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-1=0\\1-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
Vậy: \(P=a^{2004}+b^{2004}=1^{2004}+1^{2004}=2\)
Lời giải:
$a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}$
$\Rightarrow (a^{101}+b^{101})^2=(a^{100}+b^{100})(a^{102}+b^{102})$
$\Rightarrow a^{202}+b^{202}+2a^{101}.b^{101}=a^{202}+b^{202}+a^{100}b^{102}+a^{102}b^{100}$
$\Rightarrow 2a^{101}b^{101}=a^{100}b^{102}+a^{102}b^{100}$
$\Rightarrow a^{100}b^{100}(a^2+b^2-2ab)=0$
$\Rightarrow a^{100}b^{100}(a-b)^2=0$
$\Rightarrow a=0$ hoặc $b=0$ hoặc $a=b$
Nếu $a=0$ thì:
$b^{100}=b^{101}=b^{102}$
$\Rightarrow b^{100}(b-1)=0$
$\Rightarrow b=0$ hoặc b=1$ (đều tm)
$\Rightarrow a^{2022}+b^{2023}=0$ hoặc $1$
Nếu $b=0$ thì tương tự, $a=0$ hoặc $a=1$
$\Rightarrow a^{2022}+b^{2023}=0$ hoặc $1$
Nếu $a=b$ thì thay $a=b$ vào điều kiện đề thì:
$2b^{100}=2b^{101}=2b^{102}$
$\Rightarrow b^{100}=b^{101}=b^{102}$
$\Rightarrow b^{100}(b-1)=0$
$\Rightarrow b=0$ hoặc $b=1$ (đều tm)
Nếu $a=b=0\Rightarrow a^{2022}+b^{2023}=0$
Nếu $a=b=1\Rightarrow a^{2022}+b^{2023}=2$
Vậy $a^{2022}+b^{2023}$ có thể nhận giá trị $0,1,2$
\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)
\(\Rightarrow\left(a^{100}+b^{100}\right)\left(a^{102}+b^{102}\right)=\left(a^{101}+b^{101}\right)^2\)
\(\Rightarrow a^{202}+b^{202}+a^{100}b^{102}+a^{102}b^{100}=a^{202}+b^{202}+2a^{101}b^{101}\)
\(\Rightarrow a^{100}b^{100}\left(a^2+b^2\right)=a^{100}b^{100}\left(2ab\right)\)
\(\Rightarrow a^2+b^2=2ab\)
\(\Rightarrow\left(a-b\right)^2=0\)
\(\Rightarrow a=b\)
Thế vào \(a^{100}+b^{100}=a^{101}+b^{101}\)
\(\Rightarrow a^{100}+a^{100}=a^{101}+a^{101}\)
\(\Rightarrow2a^{100}\left(a-1\right)=0\)
\(\Rightarrow a=1\Rightarrow b=1\)
\(\Rightarrow...\)
dòng thứ 2 bạn phải đóng ngoặc chứ
sửa lại:
=a1000+b100+a10+b-(b1000+a100+b10+a)
\(P=2a^3+2b^3+6ab-2024\)
\(=2\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]+6ab-2024\)
\(=2\left[1-3ab\left(a+b\right)\right]+6ab-2024\)
\(=2-6ab+6ab-2024\)
=-2022
cái khúc dấu bằng thứ 2 và thứ 3, sao biến đổi mấy số trong ngoặc thành -6ab ạ
A.B = A + B
⇔ 20 = 5(2m – 1) + 4(2m + 1)
⇔ 20 = 10m – 5 + 8m + 4
⇔ 18m = 21
⇔ m = 7/6 (thỏa)
Vậy m = 7/6 thì A.B = A + B
Đặt a/b=b/c=c/a=k
=>a=bk; b=ck; c=ak
=>a=bk; b=ak*k=ak^2; c=ak
=>a=ak^3; b=ak^2; c=ak
=>k=1
=>a=b=c
\(B=\dfrac{a^{2022}\cdot a^{2023}}{a^{4045}}=1\)
Ta có : a102 + b102 = (a101 + b101)(a + b) - ab(a100 + b100)
Mà a100 + b100 = a101 + b101 = a102 + b102.
Do đó : a + b - ab = 1
=> a + b - ab - 1 = 0
<=> (a - ab) + (b - 1) = 0
<=> a(1 - b) - (1 - b) = 0
=> (a - 1)(1 - b) = 0
\(\Leftrightarrow\orbr{\begin{cases}a-1=0\\1-b=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}\)
Nên a = 1 thì b = 1
Vậy P = a2004 + b2004 = 12004 + 12004 = 1 + 1 = 2
I have a crazy idea tham khảo nhé:
Vì: a100 + b100; a101 + b101; a102 + b102 đều = nhau nên a chỉ = 1 => a2004 + b2004 = 12004 + 12004 = 1 + 1 = 2
Vậy: