K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3

a) 

\(P\left(x\right)=6x^4+2x+4x^3-3x^2-10+x^3+3x\)

\(=6x^4+\left(4x^3+x^3\right)-3x^2+\left(2x+3x\right)-10\)

\(=6x^4+5x^3-3x^2+5x-10\)

\(Q\left(x\right)=4-5x^3+2x^2-x^3+5x^4+11x^3-4x\)

\(=5x^4+\left(-5x^3-x^3+11x^3\right)+2x^2-4x+4\)

\(=5x^4+5x^3+2x^2-4x+4\)

b) 

\(P\left(x\right)+Q\left(x\right)\)

\(=\left(6x^4+5x^3-3x^2+5x-10\right)+\left(5x^4+5x^3+2x^2-4x+4\right)\)

\(=6x^4+5x^3-3x^2+5x-10+5x^4+5x^3+2x^2-4x+4\)

\(=\left(6x^4+5x^4\right)+\left(5x^3+5x^3\right)+\left(-3x^2+2x^2\right)+\left(5x-4x\right)+\left(-10+4\right)\)

\(=11x^4+10x^3-x^2+x-6\)

\(P\left(x\right)-Q\left(x\right)\)

\(=\left(6x^4+5x^3-3x^2+5x-10\right)-\left(5x^4+5x^3+2x^2-4x+4\right)\)

\(=6x^4+5x^3-3x^2+5x-10-5x^4-5x^3-2x^2+4x-4\)

\(=\left(6x^4-5x^4\right)+\left(5x^3-5x^3\right)+\left(-3x^2-2x^2\right)+\left(5x+4x\right)+\left(-10-4\right)\)

\(=x^4-5x^2+9x-14\)

a: P(x)=6x^4+5x^3-3x^2+5x-10

Q(x)=5x^4+5x^3+2x^2-4x+4

b: P(x)+Q(x)

=6x^4+5x^3-3x^2+5x-10+5x^4+5x^3+2x^2-4x+4

=11x^4+10x^3-x^2+x-6

P(x)-Q(x)

=6x^4+5x^3-3x^2+5x-10-5x^4-5x^3-2x^2+4x-4

=x^4-5x^2+9x-14

18 tháng 4 2023

a: P(x)=6x^4+5x^3-3x^2+5x-10

Q(x)=5x^4+5x^3+2x^2-4x+4

b: P(x)+Q(x)

=6x^4+5x^3-3x^2+5x-10+5x^4+5x^3+2x^2-4x+4

=11x^4+10x^3-x^2+x-6

P(x)-Q(x) =6x^4+5x^3-3x^2+5x-10-5x^4-5x^3-2x^2+4x-4

=x^4-5x^2+9x-14

22 tháng 8 2023

a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)

\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)

\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)

\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)

\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)

\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)

\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)

\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)

9 tháng 1

Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1

a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)

\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)

\(=-x^4+3x^3+x^2+x+6\)

\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)

\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)

\(=-x^5-2x^4-2x-1\)

b: Bạn ghi lại đề đi bạn

a: \(P\left(x\right)=x-2x^2+3x^5+x^4+x-1\)

\(=3x^5+x^4-2x^2+2x-1\)

\(Q\left(x\right)=3-2x-2x^2+x^4-3x^5-x^4+4x^2\)

\(=-3x^5+2x^2-2x+3\)

b: P(x)+Q(x)

\(=3x^5+x^4-2x^2+2x-1-3x^5+2x^2-2x+3\)

\(=x^4+2\)

P(x)-Q(x)

\(=3x^5+x^4-2x^2+2x-1+3x^5-2x^2+2x-3\)

\(=6x^5+x^4-4x^2+4x-4\)

31 tháng 8 2021

a, \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\\ =x^3+x^2+x+2\)

\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\\ =-x^3+x^2-x+1\)

b) \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1\\ =2x^2+3\)

\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1\\ =2x^3+2x+1\)

c, Ta thấy \(2x^2\ge0,3>0\Rightarrow M\left(x\right)>0\)

\(\Rightarrow M\left(x\right)\) không có nghiệm

a: Ta có: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)

\(=x^3+x^2+x+2\)

Ta có: \(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)

\(=-x^3-4x^2-x+1\)

b: Ta có: M(x)=P(x)+Q(x)

\(=x^3+x^2+x+2-x^3-4x^2-x+1\)

\(=-3x^2+3\)

Ta có N(x)=P(x)-Q(x)

\(=x^3+x^2+x+2+x^3+4x^2+x-1\)

\(=2x^3+5x^2+2x+1\)

a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)

\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)

b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)

\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)

8 tháng 4 2022

a)\(Q\left(x\right)=2x^3+4x^4-6x-5x^2+\dfrac{3}{2}\)

\(P\left(x\right)=2x^2-5x^4-8x+\dfrac{1}{2}\)

12 tháng 4 2017

a. Ta có:

f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2

= 2x3 + 3x2 - 2x + 3 (0.5 điểm)

g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2

= 2x3 + 3x2 - 7x + 2 (0.5 điểm)

21 tháng 4 2021

\(p\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-2x^4+1-4x^3\)

a,  \(p\left(x\right)=2x^2+1\)( thu gọn và sắp xếp )

b, Đặt \(2x^2+1=0\Leftrightarrow2x^2=-1\Leftrightarrow x^2=-\frac{1}{2}\)( vô lí )

Do \(x^2\ge0\forall x;-\frac{1}{2}< 0\)Vây đa thức ko có nghiệm ( đpcm ) 

27 tháng 7 2019

\(\text{a)}P\left(x\right)=2x^2+2x-6x^2+4x^3+2-x^3\)

\(P\left(x\right)=3x^3-4x^2+2x+2\)

\(Q\left(x\right)=3-2x^4+3x+2x^4+3x^3-x\)

\(Q\left(x\right)=3x^3+2x+3\)

\(\text{b)}C\left(x\right)=P\left(x\right)+Q\left(x\right)\)

                 \(P\left(x\right)=3x^3-4x^2+2x+2\)

                 \(Q\left(x\right)=3x^3\)                \(2x+3\)

                                                                                

\(P\left(x\right)+Q\left(x\right)=6x^3-4x^2+4x+5\)

             \(\Rightarrow C\left(x\right)=6x^3-4x^2+4x+5\)

\(\text{c)}D\left(x\right)=Q\left(x\right)-P\left(x\right)\)

                 \(Q\left(x\right)=3x^3\)                \(2x+3\)

                  \(P\left(x\right)=3x^3-4x^2+2x+2\)

                                                                                    

\(Q\left(x\right)-P\left(x\right)=\)       \(4x^2\)             \(+1\)

             \(\Rightarrow D\left(x\right)=4x^2+1\)

Để \(D\left(x\right)\)có nghiệm thì:

         \(D\left(x\right)=0\)

\(\Rightarrow4x^2+1=0\)

Mà \(4x^2\ge0\)

\(\Rightarrow4x^2+1\ge1\)

\(\Rightarrow D\left(x\right)\ge1\)

\(\Rightarrow D\left(x\right)>0\)

Vậy đa thức \(D\left(x\right)\)vô nghiệm

a: P(x)=-x^3+2x^3-x^2+3x^2+x-1=x^3+2x^2+x-1

Q(x)=-3x^3+2x^3-x^2+3x-4x+3=-x^3-x^2-x+3

b: H(x)=P(x)+Q(X)

=x^3+2x^2+x-1-x^3-x^2-x+3

=x^2+2

c: H(-1)=H(1)=1+2=3

d: H(x)=x^2+2>=2>0 với mọi x

=>H(x) ko có nghiệm