Phân tích đa thức sau thành nhân tử
a2(a+1)2+(a+1)2 +a2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left(a-5\right)^2-4b^2=\left(a-2b-5\right)\left(a+2b-5\right)\\ b,=ax^2+a-a^2x-x=ax\left(a-x\right)+\left(a-x\right)=\left(ax+1\right)\left(a-x\right)\)
a: \(=\left(a-5-2b\right)\left(a-5+2b\right)\)
b: \(ax^2+a-a^2x-x\)
\(=ax\left(x-a\right)-\left(x-a\right)\)
\(=\left(x-a\right)\left(ax-1\right)\)
Bài 4:
Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a: \(a^2+6ab+9b^2-1\)
\(=\left(a+3b\right)^2-1^2\)
\(=\left(a+3b+1\right)\left(a+3b-1\right)\)
b: \(4x^2-25+\left(2x+7\right)\left(5-2x\right)\)
\(=\left(2x-5\right)\left(2x+5\right)-\left(2x+7\right)\left(2x-5\right)\)
\(=\left(2x-5\right)\left(2x+5-2x-7\right)\)
\(=-2\left(2x-5\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=\left(x+3y\right)\left(-15x+5\right)\)
\(=-5\left(3x-1\right)\left(x+3y\right)\)
d: \(x\left(x+y\right)^2-y\left(x+y\right)^2+xy-x^2\)
\(=\left(x+y\right)^2\cdot\left(x-y\right)-x\left(x-y\right)\)
\(=\left(x-y\right)\left[\left(x+y\right)^2-x\right]\)
e: \(a^2-6a+9-b^2\)
\(=\left(a-3\right)^2-b^2\)
\(=\left(a-3-b\right)\left(a-3+b\right)\)
f: \(x^3-y^3-3x^2+3x-1\)
\(=\left(x^3-3x^2+3x-1\right)-y^3\)
\(=\left(x-1\right)^3-y^3\)
\(=\left(x-1-y\right)\left[\left(x-1\right)^2+y\left(x-1\right)+y^2\right]\)
a. 3x2– 7x + 2 = 3x2 – 6x – x + 2
= 3x(x -2) – (x - 2)
= (x - 2)(3x - 1)
b. a(x2 + 1) – x(a2 + 1) = ax2 + a – a2x – x
= ax(x - a) – (x - a)
= (x - a)(ax - 1)
a) \(3x^2-7x+2=3x^2-x-6x+2=x\left(3x-1\right)-2\left(3x-1\right)=\left(3x-1\right)\left(x-2\right)\)
b) \(a\left(x^2+1\right)-x\left(a^2+1\right)=\left(a^2+1\right)\left(a-x\right)\)
\(a,27x^3-54x^2y+36xy^2-8y^3\)
\(=\left(3x\right)^3-3.\left(3x\right)^2.2y+3.3x.\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(3x-2y\right)^3\)
\(b,x^3-1+5x^2-5+3x-3\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x^2-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left[x^2+x+1+5\left(x+1\right)+3\right]\)
\(=\left(x-1\right)\left(x^2+6x+9\right)\)
\(=\left(x-1\right)\left(x+3\right)^2\)
\(c,a^5+a^4+a^3+a^2+a+1\)
\(=a^4\left(a+1\right)+a^2\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(a^4+a^2+1\right)\)
\(27x^3-54x^2y+36xy^2-8y^3\)
\(=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(3x-2y\right)^3\)
______________________
\(x^3-1+5x^2-5+3x-3\)
\(=\left(x^3-1\right)+\left(5x^2-5\right)+\left(3x-3\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x^2-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)
\(=\left(x-1\right)\left(x^2+6x+9\right)\)
\(=\left(x-1\right)\left(x+3\right)^2\)
________________
\(a^5+a^4+a^3+a^2+a+1\)
\(=a^4\left(a+1\right)+a^2\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(a^4+a^2+1\right)\)
\(=\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)
a, \(4abc-8ab^2c=4abc\left(1-2b\right)\)
b, \(x^2\left(2a-1\right)+x\left(1-2a\right)=x^2\left(2a-1\right)-x\left(2a-1\right)\)
\(=x\left(x-1\right)\left(2a-1\right)\)
c, \(9a^4\left(a-2\right)+a^2\left(a-2\right)=a^2\left(9a^2+1\right)\left(a-2\right)\)
d, \(\left(a-4\right)\left(2a-1\right)-8a+4=\left(a-4\right)\left(2a-1\right)-4\left(2a-1\right)\)
\(=\left(a-8\right)\left(2a-1\right)\)
a) `4abc-8ab^2c=4abc(1-2b)`
b) `x^2 (2a-1)+x(1-2a) = x^2 (2a-1) -x(2a-1) = (2a-1)(x^2-x)=x(2a-1)(x-1)`
c) `9a^4 (a-2) +a^2 (a-2) = (a-2)(9a^4+a^2)=a^2 (a-2)(9a^2+1)`
d) `(a-4)(2a-1)-8a+4=(a-4)(2a-1)-4(2a-1)=(2a-1)(a-8)`
Bài 1:
a: \(4a^2-6b=2\left(2a^2-3b\right)\)
b: \(m^3n-2m^2n^2-mn\)
\(=mn\left(m^2-2mn-1\right)\)
Bài 1:
a) \(4a^2-6b=2\left(a^2-3b\right)\)
b) \(=mn\left(m^2-2mn-1\right)\)
Bài 2:
a) \(=4\left(u-2\right)^2+v\left(u-2\right)=\left(u-2\right)\left(4u-8+v\right)\)
b) \(=a\left(a-b\right)^3-b\left(a-b\right)^2-b^2\left(a-b\right)=\left(a-b\right)\left[a\left(a-b\right)^2-b\left(a-b\right)-b^2\right]=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab+b^2-b^2\right)=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab\right)\)
ta có \(a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2=a^2\left(a^2+2a+1\right)+a^2+2a+1+a^2\)
\(=a^4+2a^3+a^2+a^2+2a+1+a^2\) \(=a^4+a^2+1+2a^3+2a^2+2a=\left(a^2+a+1\right)^2\)