K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

bn chỉ cần nhân ra hết là  dc

Làm hộ mình với <3

AH
Akai Haruma
Giáo viên
21 tháng 8 2021

Lời giải:
\(A=\frac{6!}{(m-2)(m-3)}\left[\frac{m!}{(m-4)!.5!}-\frac{m!}{(m-4)!3.4!}\right]\)

\(=\frac{6!}{(m-2)(m-3)}.\frac{m!}{(m-4)!}(\frac{1}{5!}-\frac{1}{3.4!})=\frac{-4}{(m-2)(m-3)}.\frac{m!}{(m-4)!}\)

\(=\frac{-4}{(m-2)(m-3)}.(m-3)(m-2)(m-1)m=-4m(m-1)\)

14 tháng 7 2018

Ta có:

\(\left(m^3-m+1\right)^2+\left(m^2-3\right)^2-2\left(m^2-3\right)\left(m^3-m+1\right)\)\(=\left(m^3-m+1-m^2+3\right)^2=\left(m^3-m^2-m+4\right)^2\)

26 tháng 11 2017

a)  M = ( 2x + 3)(2x - 3) - 2(x + 5)2 - 2(x - 1)(x + 2) 

   = 4x2 - 9 - 2(x2 + 10x + 25) - 2(x2 + x - 2)

   = 4x2 - 9 - 2x2 - 20x - 50 - 2x2 - 2x + 4

   = -22x - 55 =  -11(2x + 5)

b) M = -11(2x + 5) = - 11(2.\(\frac{-7}{3}\)+ 5) = \(\frac{-11}{3}\)

b)  M = -11(2x + 5) = 0

\(\Rightarrow\)2x + 5 = 0

\(\Rightarrow\)x = \(\frac{-5}{2}\)

26 tháng 11 2017

Ta có: M = (2x+3)(2x-3) - 2(x+5)2 - 2(x-1)(x+2) \(=\left(2x\right)^2-3^2-2\left(x^2+10x+25\right)-\) \(2\left(x^2+x-2\right)\)

\(=4x^2-9-2x^2-20x-50-2x^2-2x+4\) =\(\left(4x^2-2x^2-2x^2\right)-\left(20x+2x\right)-\left(50+9-4\right)\) \(=-22x-55\)

b, Với x = \(-2\frac{1}{3}=\frac{-7}{3}\)

\(\Rightarrow M=-22.\frac{-7}{3}-55=\frac{154}{3}-55=\frac{-11}{3}\)

c, Để M = 0 => -22x - 55 = 0 \(\Rightarrow-22x=55\Rightarrow x=\frac{-55}{22}=\frac{-5}{2}\)

Vậy \(x=\frac{-5}{2}\) 

1: \(1+\sqrt{\dfrac{\left(x-1\right)^2}{x-1}}=1+\sqrt{x-1}\)

2: \(A=\sqrt{\left(x-2\right)^2}+\dfrac{x-2}{\sqrt{\left(x-2\right)^2}}\)

=\(\left|x-2\right|+\dfrac{x-2}{\left|x-2\right|}\)

TH1: x>2

A=x-2+(x-2)/(x-2)=x-2+1=x-1

TH2: x<2

A=2-x+(x-2)/(2-x)=2-x-1=1-x

3: \(C=\sqrt{m}-\sqrt{m-2\sqrt{m}+1}\)

\(=\sqrt{m}-\sqrt{\left(\sqrt{m}-1\right)^2}\)

\(=\sqrt{m}-\left|\sqrt{m}-1\right|\)

TH1: m>=1

\(C=\sqrt{m}-\sqrt{m}+1=1\)

TH2: 0<=m<1

\(C=\sqrt{m}+\sqrt{m}-1=2\sqrt{m}-1\)

1:

\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)

\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)

a) 

 \(\begin{matrix}N\left(x\right)=-4x^4+9x^3-x^2+5x+\dfrac{1}{3}\\^-M\left(x\right)=-x^4-9x^3+x^2+9x+\dfrac{4}{3}\\\overline{N\left(x\right)-M\left(x\right)=-3x^4+18x^3-2x^2-4x-1}\end{matrix}\)

b) 

   \(\begin{matrix}M\left(x\right)=-x^4-9x^3+x^2+9x+\dfrac{4}{3}\\^+N\left(x\right)=-4x^4+9x^3-x^2+5x+\dfrac{1}{3}\\\overline{M\left(x\right)+N\left(x\right)=-5x^4+14x+\dfrac{5}{3}}\end{matrix}\)