K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

ta có 2 số tự nhiên liên tiếp luôn có dạng 2a và 2a+1 (a thuộc N)

=> 2a.(2a+1) là số chẵn

mà \(3^{70+1}\) là số lẻ

=> \(3^{70+1}\) không là tích 2 số tự nhiên liên tiếp

6 tháng 9 2017

\(3^{70+1}\)đúng vì

tích của nó bằng :

\(3^{70^{ }}+3^1=3^{71}\)

22 tháng 8 2018

Hỏi gì nhìu thế !!

1.

a) Tích của 3 số tự nhiên liên tiếp thì chia hết cho 3 vì trong 3 số đó luôn có 1 số chia hết cho 3 nên 1990 không thể là tích của 3 số tự nhiên liên tiếp vì:
1 + 9 + 9 + 0 = 19     ( không chia hết cho 3 )

b) 3 số tự nhiên liên tiếp thì bao giờ cũng có 1 số chẵn vì vậy mà tích của chúng là 1 số chẵn mà 1995 là 1 số lẻ do vậy không phải là tích của 3 số tự nhiên liên tiếp. 

c) Tổng của 3 số tự nhiên liên tiếp thì sẽ bằng 3 lần số ở giữa do đó số này phải chia hết cho 3.

Mà 1993 = 1 + 9 + 9 + 3 = 22 ( Không chia hết cho 3 )

Nên số 1993 không là tổng của 3 số tự nhiên liên tiếp.

12 tháng 9 2023

nguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

10 tháng 3 2016

tích 2 stn liên tiếp chia 3 dư 0 hoặc 2

mà 350+1 chia 3 dư 1 nên ko là tích 2 stn liên tiếp

        

10 tháng 3 2016

Bạn giải thích tại sao Tích 2 số tn liên tiếp chia 3 dư 0 hoặc 2 đi, hay là bạn chỉ chép lời giải trong ''nâng cao và phát triển toán 8'' thôi?

10 tháng 8 2014

a)

Nếu một trong hai số chia hết cho 3 thì tích chia hết cho 3 (tức là chia 3 dư 0)

Nếu cả hai số đều không chia hết cho 3 thì sẽ có 1 số chia cho 3 dư 1, số kia chia cho 3 dư 2 (vì là hai số tự nhiên liên tiếp) => tích của chúng chia cho 3 dư 2.

b)

350 +1 chia 3 dư 1 nên nó không thể là tích của 2 số tự nhiên liên tiếp, vì nếu là tích của 2 số tự nhiên liên tiếp thì nó chia cho 3 dư 0 hoặc dư 2 (theo câu a)

24 tháng 6 2017

bài 1) gọi tích 2 số nguyên liên tiếp là a(a+1)

Nếu a=3k => a(a+1)=3k(3k+1)=9k^2+3k chia hết cho 3

Nếu a=3k+1=> a(a+1)=3k+1(3k+1)=9k^2+3k+3k+1 chia 3 dư 1

Nếu a=3k+2 tương tự chia hết cho 3

Số 3^50+1 chia 3 dư 1(vô lý)

Vậy nó không phải là tích 2 số nguyên liên tiếp. CHÚC BẠN HỌC TỐT<3

16 tháng 2 2016

lớp mấy

16 tháng 2 2016

Đặt tích 2 số tự nhiên liên tiếp là \(a\left(a+1\right)=a^2+a\)

Ta sẽ xét xem tích 2 số tự nhiên liên tiếp chia cho 3 dư bao nhiêu.

TH1: a chia hết cho 3

\(\Rightarrow\)a2 chia hết cho 3 và a cũng chia hết cho 3

\(\Rightarrow a^2+a\) chia hết cho 3

\(\Rightarrow a\left(a+1\right)\) chia hết cho 3

TH2: a chia 3 dư 1 -> a có dạng 3k+1

\(\Rightarrow a^2=\left(3k+1\right)^2=\left(3k+1\right)\left(3k+1\right)=\left(3k+1\right)3k+\left(3k+1\right).1=9k^2+3k+3k+1\)\(=3.\left(3k^2+k+k\right)+1\)

\(\Rightarrow a^2+a=3.\left(3k^2+k+k\right)+1+3k+1=3.\left(3k^2+k+k+k\right)+1+1=3.\left(3k^2+3k\right)+2\)

Thấy \(3.\left(3k^2+3k\right)+2\) chia 3 dư 2

\(\Rightarrow a^2+a\) chia 3 dư 2

\(\Rightarrow a\left(a+1\right)\) chia 3 dư 2

TH3: a chia 3 dư 2

\(\Rightarrow a^2=\left(3k+2\right)^2=\left(3k+2\right)\left(3k+2\right)=\left(3k+2\right).3k+\left(3k+2\right).2=9k^2+6k+6k+4\)                                                                                                                             \(=3.\left(3k^2+2k+2k\right)+4\)

\(\Rightarrow a^2+a=3.\left(3k^2+2k+2k\right)+4+3k+2=3.\left(3k^2+2k+2k+k\right)+6\)

                                                              \(=3.\left(3k^2+5k\right)+3.2=3.\left(3k^2+5k+2\right)\) chia hết cho 3

Như vậy tích 2 số tự nhiên liên tiếp luôn chia hết cho 3 hoặc chia 3 dư 2.

Mà \(\left(-3\right)^{20}+1=3^{20}+1\) chia 3 dư 1

Vậy \(\left(-3\right)^{20}+1\) không phải tích 2 số tự nhiên liên tiếp.