Chứng Minh rằng :\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b+c}{2}\)
Với \(\forall a,b,c>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Từ \(\left(a+b\right)^2\ge4ab\) (bất đẳng thức Cô-si cho hai số thực dương \(a,b\))
nên nhân \(\frac{1}{4\left(a+b\right)}\) vào cả hai vế của bđt trên, ta được:
\(\frac{a+b}{4}\ge\frac{ab}{a+b}\) \(\left(1\right)\)
Tương tự, ta cũng có \(\frac{b+c}{4}\ge\frac{bc}{b+c}\) \(\left(2\right)\) và \(\frac{c+a}{4}\ge\frac{ca}{c+a}\) \(\left(3\right)\)
Cộng từng vế của bđt \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\), ta được:
\(\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}\ge\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\)
\(\Leftrightarrow\) \(\frac{2\left(a+b+c\right)}{4}\ge\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\)
\(\Leftrightarrow\) \(\frac{a+b+c}{2}\ge\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\), tức \(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b+c}{2}\) \(\left(đpcm\right)\)
Dấu \("="\) xảy ra khi và chỉ khi \(a=b=c\)
bđt \(\Leftrightarrow\)\(\Sigma_{cyc}\frac{a^2}{2}+\Sigma_{cyc}\frac{a}{bc}\ge\frac{9}{2}\)
mặt khác: \(\Sigma_{cyc}\frac{a}{bc}=\frac{1}{2}\Sigma_{cyc}\left(\frac{b}{ca}+\frac{c}{ab}\right)\ge\Sigma\frac{1}{a}\)\(\Rightarrow\)\(\Sigma_{cyc}\frac{a}{bc}\ge\Sigma_{cyc}\frac{1}{a}\)
do đó cần CM: \(\Sigma_{cyc}\frac{a^2}{2}+\Sigma_{cyc}\frac{1}{a}\ge\frac{9}{2}\) (1)
\(VT_{\left(1\right)}=\Sigma_{cyc}\left(\frac{a^2}{2}+\frac{1}{2a}+\frac{1}{2a}\right)\ge3.\frac{3}{2}=\frac{9}{2}\)
"=" \(\Leftrightarrow\)\(a=b=c=1\)
Áp dụng bất đẳng thức Bunyakovsky, ta được: \(\Sigma_{cyc}\frac{ab}{a^2+bc+ca}=\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)
Ta có: \(\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}=\frac{ab^3+bc^3+ca^3+2.a\sqrt{ab}.c\sqrt{ab}+2.a\sqrt{bc}.b\sqrt{bc}+2.c\sqrt{ca}.b\sqrt{ca}}{\left(ab+bc+ca\right)^2}\le\frac{ab^3+bc^3+ca^3+a^3b+abc^2+a^2bc+b^3c+c^3a+ab^2c}{\left(ab+bc+ca\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}\)
Đẳng thức xảy ra khi a = b = c
Áp dụng BĐT Bunhiacopxki:
\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)
\(\Rightarrow\frac{ab}{a^2+bc+ca}\le\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)
Tương tự: \(\frac{bc}{b^2+ca+ab}\le\frac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\) ; \(\frac{ac}{c^2+ab+bc}\le\frac{ac\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)
Cộng vế với vế:
\(VT\le\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)
\(VT\le\frac{ab^3+bc^3+ca^3+2.a\sqrt{ab}.c\sqrt{ab}+2a\sqrt{bc}.b\sqrt{bc}+2c\sqrt{ac}.b\sqrt{ac}}{\left(ab+bc+ca\right)^2}\)
\(VT\le\frac{ab^3+bc^3+ca^3+a^3b+abc^2+b^3c+a^2bc+ac^3+ab^2c}{\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}\)
\(VT\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)
Dấu "=" xảy ra khi \(a=b=c\)
Vì a;b;c > 0 nên theo bất đẳng thức Cauchy ta có :
\(\frac{ab}{a+b}\le\frac{ab}{2\sqrt{ab}}=\frac{\sqrt{ab}}{2}\le\frac{\frac{a+b}{2}}{2}=\frac{a+b}{4}\) (1)
\(\frac{bc}{b+c}\le\frac{bc}{2\sqrt{bc}}=\frac{\sqrt{bc}}{2}\le\frac{\frac{b+c}{2}}{2}=\frac{b+c}{4}\) (2)
\(\frac{ac}{a+c}\le\frac{ac}{2\sqrt{ac}}=\frac{\sqrt{ac}}{2}\le\frac{\frac{a+c}{2}}{2}=\frac{a+c}{4}\) (3)
Cộng vế với vế của (1) ; (2) ; (3) lại ta được :
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}\le\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\) (đpcm)