A=2/3^2 + 2/5^2 + 2/7^2 + .... _ 2/99^2
Chứng minh: 98/303<A<98/99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(-25).68+(-340).250
=(-25).68+68.125
=68.100
=6800
b)M=1-2+3-4+5-6+.......+99-100
M=(1-2)+(3-4)+...+(99-100)
M= (-1)+(-1)+....+ (-1) (50 số )
M=(-1).50
M= -50
c)N=1+3-5-7+9+11-........+397-399
N=(1+3-5-7) + .... ( 393+395-397-399)
N= (-8)+(-8)+....+(-8) ( 50 số )
N= (-8).50
N= -400
d)E=1-2-3+4+5-6-7+......+97-98-99+100
E=(1-2-3+4)+...+(97-98-99+100)
E= 0+0+...+0
E=0
e)F=2100-299-298-......-22-2-1
=> 2.D=2201-2100-...-22-2
=> 2.D-D=2101-2100.2-(-1)
D=2101-2101+1
D=1
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
a) = -86700
b) M = -50
c) N = hk hỉu đề, bạn có ghi đề đúng hk vậy
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
\(\dfrac{2}{3^2}< \dfrac{2}{1\cdot3}=1-\dfrac{1}{3}\)
\(\dfrac{2}{5^2}< \dfrac{2}{3\cdot5}=\dfrac{1}{3}-\dfrac{1}{5}\)
...
\(\dfrac{2}{99^2}< \dfrac{2}{97\cdot99}=\dfrac{1}{97}-\dfrac{1}{99}\)
Do đó: \(A=\dfrac{2}{3^2}+\dfrac{2}{5^2}+...+\dfrac{2}{99^2}< 1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\)=>\(A< 1-\dfrac{1}{99}=\dfrac{98}{99}\)
\(\dfrac{2}{3^2}>\dfrac{2}{3\cdot5}=\dfrac{1}{3}-\dfrac{1}{5}\)
\(\dfrac{2}{5^2}>\dfrac{2}{5\cdot7}=\dfrac{1}{5}-\dfrac{1}{7}\)
...
\(\dfrac{2}{99^2}>\dfrac{2}{99\cdot101}=\dfrac{1}{99}-\dfrac{1}{101}\)
Do đó: \(A=\dfrac{2}{3^2}+\dfrac{2}{5^2}+...+\dfrac{2}{99^2}>\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
=>\(A>\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}\)
Do đó: \(\dfrac{98}{303}< A< \dfrac{98}{99}\)