K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2024

\(\dfrac{12345}{10000}=\dfrac{2469}{2000}\)

\(\dfrac{19765}{13478}=\dfrac{19765}{12478}\)

Xong bạn so sánh nhé, số hơi xấu.

 

2 tháng 3 2024

số to quá bạn ạ!

a: Các phân số tối giản là \(\dfrac{1}{3};\dfrac{4}{7};\dfrac{72}{73}\) vì ƯCLN(1;3)=1; ƯCLN(4;7)=1; ƯCLN(72;73)=1

b:

Các phân số rút gọn được là

 \(\dfrac{8}{12}=\dfrac{8:4}{12:4}=\dfrac{2}{3}\)

\(\dfrac{30}{36}=\dfrac{30:6}{36:6}=\dfrac{5}{6}\)

29 tháng 12 2022

\(P=\left(\dfrac{1}{2\sqrt{x}}-\dfrac{x}{2\sqrt{x}}\right)^2.\left(\dfrac{\left(\sqrt{x}-1\right)^2}{x-1}-\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}\right)\)

\(=\left(\dfrac{1-x}{2\sqrt{x}}\right)^2.\left(\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)

\(=\dfrac{\left(1-x\right)^2}{2\sqrt{x}}.\dfrac{-4\sqrt{x}}{-\left(1-x\right)}\)

\(=\left(1-x\right).2\sqrt{x}\)

\(=2\sqrt{x}-2x\sqrt{x}\)

 

3 tháng 7 2021

a) 

\(P=\left(\dfrac{b-a}{\sqrt{b}-\sqrt{a}}-\dfrac{a\sqrt{a}-b\sqrt{b}}{a-b}\right):\dfrac{\left(\sqrt{b}-\sqrt{a}\right)^2+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)

\(=\left[\sqrt{b}+\sqrt{a}-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right]:\dfrac{b-\sqrt{ab}+a}{\sqrt{a}+\sqrt{b}}\)

\(=\left(\sqrt{b}+\sqrt{a}-\dfrac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\right).\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\)

\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-a-\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\)

\(=\dfrac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\)\(=\dfrac{\sqrt{ab}}{a-\sqrt{ab}+b}\)

b) \(P=\dfrac{\sqrt{ab}}{a-\sqrt{ab}+b}=\dfrac{\sqrt{ab}}{\left(\sqrt{a}-\dfrac{1}{2}\sqrt{b}\right)^2+\dfrac{3}{4}b}\)

Vì \(\left(\sqrt{a}-\dfrac{1}{2}\sqrt{b}\right)^2+\dfrac{3}{4}b>0;\forall a\ge0;b\ge0;a\ne b\)

\(\sqrt{ab}\ge0\)\(\forall a\ge0;b\ge0\)

\(\Rightarrow P=\dfrac{\sqrt{ab}}{\left(\sqrt{a}-\dfrac{1}{2}\sqrt{b}\right)^2+\dfrac{3}{4}b}\ge0\)

Vậy...

6 tháng 7 2021

cảm ơn tất cả mọi người

26 tháng 8 2023

a) Đặt \(ƯCLN\left(5a+3,7a+4\right)=d\)

\(\Rightarrow\left\{{}\begin{matrix}5a+3⋮d\\7a+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}35a+21⋮d\\35a+20⋮d\end{matrix}\right.\)

\(\Rightarrow\left(35a+21\right)-\left(35a+20\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(5a+3,7a+4\right)=1\) hay phân số \(\dfrac{5a+3}{7a+4}\) là phân số tối giản. Thế thì phân số này không thể rút gọn cho nguyên nào khác 1.

b) \(A=\dfrac{5a+3}{7a+4}\)

\(A=\dfrac{\dfrac{5}{7}\left(7a+4\right)+\dfrac{1}{7}}{7a+4}\)

\(A=\dfrac{5}{7}+\dfrac{1}{7\left(7a+4\right)}\)

 Nếu \(a< 0\) thì \(A< \dfrac{5}{7}\) còn nếu \(a\ge0\) thì \(A>\dfrac{5}{7}\). Do đó ta chỉ cần tìm giá trị lớn nhất của A khi \(a>0\). Để A lớn nhất thì \(7a+4\) nhỏ nhất hay \(a=0\). Vậy để phân số A lớn nhất thì \(a=0\)

29 tháng 10 2023

a: Khi x=6 thì \(A=\dfrac{4}{6-3}=\dfrac{4}{3}\)

b: \(B=\dfrac{4x}{x^2-9}-\dfrac{x-3}{x+3}\)(ĐKXĐ: \(x\notin\left\{3;-3\right\}\))

\(=\dfrac{4x}{\left(x-3\right)\left(x+3\right)}-\dfrac{x-3}{x+3}\)

\(=\dfrac{4x-\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{4x-x^2+6x-9}{\left(x+3\right)\left(x-3\right)}=\dfrac{-x^2+10x-9}{\left(x+3\right)\left(x-3\right)}\)

 

 

a: Ta có: \(A=\left(1+\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}-x}\right)+\dfrac{5}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{\sqrt{x}-1+1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{5}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}-1}{1}+\dfrac{5}{\sqrt{x}}\)

\(=\dfrac{x+4}{\sqrt{x}}\)

b: Để A=5 thì \(x+4=5\sqrt{x}\)

\(\Leftrightarrow x=16\)

31 tháng 8 2021

a. \(A=\left(1+\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}-x}\right)+\dfrac{5}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1-\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}+\dfrac{5}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}.\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{-\sqrt{x}}+\dfrac{5}{\sqrt{x}}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}+\dfrac{5}{\sqrt{x}}=\dfrac{x-1+5}{\sqrt{x}}=\dfrac{x+4}{\sqrt{x}}\)

b. \(A=5\Leftrightarrow\dfrac{x+4}{\sqrt{x}}=5\Leftrightarrow x+4=5\sqrt{x}\Leftrightarrow x-5\sqrt{x}+4=0\)

\(\Leftrightarrow\left(\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=16\\x=1\end{matrix}\right.\)

Vậy tất cả các x thỏa ycbt là x=1 hoặc x=16

c. \(A>4\Leftrightarrow\dfrac{x+4}{\sqrt{x}}>4\Leftrightarrow\dfrac{x+4}{\sqrt{x}}-4>0\Leftrightarrow\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}}>0\)

Vì \(\left(\sqrt{x}-2\right)^2\ge0\forall x\) nên \(\left\{{}\begin{matrix}\sqrt{x}-2\ne0\\\sqrt{x}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x>0\end{matrix}\right.\)

Vậy tất cả các x thỏa mãn ycbt là x>0 và \(x\ne4\)

 

15 tháng 6 2017

a) khẳng định a đúng

b) khẳng định b sai

29 tháng 3 2018

a) Khẳng định sai.

b) Khẳng định đúng.