Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm D sao cho DC=AC. Gọi E là điểm đối xứng D qua C. Chứng minh rằng AB.AE=AD.BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Vì E đối xứng với D qua AB
⇒ AB là đường trung trực của đoạn thẳng DE
⇒ AD = AE (tính chất đường trung trực)
Nên ∆ ADE cân tại A
Suy ra: AB là đường phân giác của ∠ (DAE) ⇒ ∠ A 1 = ∠ A 2
* Vì F đối xứng với D qua AC
⇒ AC là đường trung trực của đoạn thẳng DF
⇒ AD = AF (tính chất đường trung trực)
Nên ∆ ADF cân tại A
Suy ra: AC là phân giác của ∠ (DAF)
⇒ ∠ A 3 = ∠ A 4
∠ (EAF) = ∠ EAD) + ∠ (DAF) = ∠ A 1 + ∠ A 2 + ∠ A 3 + ∠ A 4 = 2( ∠ A 1 + ∠ A 3 ) = 2 . 90 0 = 180 0
⇒ E, A, F thẳng hàng có AE = AF = AD
Nên A là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm A.
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
a,Xét tứ giác ABDC có:
D đối xứng với A qua M nên :
DA=DC(1)
M là trung điểm BC nên:
BM=MC(2)
Từ (1)và (2) suy ra:
tứ giác ABDC là hình chữ nhật(đpcm)
b, vì ABDC là hình chữ nhật nên:
AB=DC và AB//DC
mà DC=FC và F trên tia DC
=>AB=FC và AB//FC
vậy tứ giác ABCF là hình bình hành(đpcm)
* Vì E đối xứng với D qua AB
⇒ AB là đường trung trực của đoạn thẳng DE
⇒ AD = AE (tính chất đường trung trực)
Nên ∆ ADE cân tại A
Suy ra: AB là đường phân giác của ∠ (DAE) ⇒ ∠ A 1 = ∠ A 2
* Vì F đối xứng với D qua AC
⇒ AC là đường trung trực của đoạn thẳng DF
⇒ AD = AF (tính chất đường trung trực)
Nên ∆ ADF cân tại A
Suy ra: AC là phân giác của ∠ (DAF)
a: Xét tứ giác ABDC có
E là trung điểm của đường chéo BC
E là trung điểm của đường chéo AD
Do đó: ABDC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình chữ nhật
b: Ta có: ΔABC vuông tại A
mà AE là đường trung tuyến ứng với cạnh huyền BC
nên AE=BE=CE
Xét tứ giác AECF có
N là trung điểm của đường chéo FE
N là trung điểm của đường chéo AC
Do đó: AECF là hình bình hành
mà AE=CE
nên AECF là hình thoi
* Vì E đối xứng với D qua AB
⇒ AB là đường trung trực của đoạn thẳng DE
⇒ AD = AE (tính chất đường trung trực)
Nên ΔADE cân tại A
Suy ra: AB là đường phân giác của ∠(DAE) ⇒ ∠A1= ∠A2
* Vì F đối xứng với D qua AC⇒ AC là đường trung trực của đoạn thẳng DF
⇒ AD = AF (tính chất đường trung trực)
Nên ΔADF cân tại A
Suy ra: AC là phân giác của ∠(DAF)
⇒ ∠A3= ∠A4
∠(EAF) = ∠(EAD) + ∠(DAF) = ∠A1+ ∠A2+ ∠A3+ ∠A4= 2(∠A1+ ∠A3) = 2.90o = 180o
⇒ E, A, F thẳng hàng có AE = AF = AD
Nên A là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm A.
a) Xét ∆AHD và ∆FHA có:
^AHD = ^FHA (= 900)
\(\frac{AH}{HD}=\frac{HF}{AH}\)(gt)
Do đó ∆AHD ~ ∆FHA (c.g.c)
⇒ ^HAD = ^HFA
Mà ^HFA + ^FAH = 900 nên ^HAD + ^FAH = 900 ⇒ ^FAD = 900
Vậy ∆ADF vuông tại A (đpcm)
b) Đặt AC = CD = a thì AB = 2a
∆ABC vuông tại A nên BC2 = AB2 + AC2 = (2a)2 + a2 = 5a2 ⇒ \(BC=a\sqrt{5}\)
Ta có: BD = BC - CD \(=a\sqrt{5}-a\Rightarrow BD^2=a^2\left(\sqrt{5}-1\right)^2=a^2\left(6-2\sqrt{5}\right)\)(1)
và AE = AB - BE = AB - BD = AB - (BC - CD) = AB - BC + CD \(=2a-a\sqrt{5}+a=\left(3-\sqrt{5}\right)a\)
\(\Rightarrow AB.AE=2a.\left(3-\sqrt{5}\right)a=a^2\left(6-2\sqrt{5}\right)\)(2)
Từ (1) và (2) suy ra BD2 = AB.AE (đpcm)
vì DC=AC mà E là điểm đối xứng D qua C=>DC=CE
=>DC=AC=CE mà DC+CE=DE
=>AC=1/2.DE
=>tam giác ADE vuông tại A=>góc CAE+ góc CAD=90 độ(1)
lại có tam giác ABC vuông tại A=> góc BAD+ góc CAD=90 độ(2)
từ (1)(2)=> góc CAE=góc BAD(3)
mà AC=CE=>tam giác ACE cân tại C=> góc CAE=góc CEA(4)
từ (3)(4)=> góc BAD=Góc CEA
xét tam giác ABD và tam giác EBA có góc B chung
góc BAD=Góc CEA(cmt)
=> tam giác ABD đồng dạng tam giác EBA(góc.góc)
=>AB/BE=AD/AE<=>AB.AE=AD.BE