CM rằng trong 1 tứ giác , tổng 2 đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy .
Giúp mình nha những tấm lòng nhân ái !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi tứ giác đó và nhỏ hơn chu vi tứ giác đó:
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
* giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
* giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
Giả sử tứ giác đó là ABCD , hai đường chéo AC và BD cắt nhau tại O
\(\Rightarrow OA+OB+OB+OC+OC+OD+OD+OA>AB+BC+CD+DA\)
\(\Leftrightarrow2\left(AC+BD\right)>AB+BC+CD+AD\Leftrightarrow AC+BD>\frac{AB+BC+CD+AD}{2}\)
\(BC+CD>BD\)
\(\Rightarrow AB+BC+AD+DC+AB+AD+BC+CD>AC+AC+BD+BD\)
\(\Leftrightarrow2\left(AB+BC+CD+DA\right)>2\left(AC+BD\right)\Leftrightarrow AB+BC+CD+DA>AC+BD\)
\(OB+OC>BC\)
\(OC+OD>CD\)
\(OD+OA>AD\)
\(\Rightarrow2\left(OA+OB+OC+OD\right)>AB+BC+CD+DA\Leftrightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\)
\(BD< AB+AD\) ; \(BD< BC+CD\)
\(\Rightarrow2\left(AC+BD\right)< 2\left(AB+BC+CD+AD\right)\Leftrightarrow AC+BD< AB+BC+CD+AD\)
Vậy ta có : \(\frac{AB+BC+CD+AD}{2}< AC+BD< AB+BC+CD+AD\)
Gọi O là giao điểm của AC và BD.Ta có :
OA + OB > AB , OB + OC > AC ; OC + CD > CD , OD + OA > AD.Cộng từng vế các bất đẳng thức trên rồi chia cho 2 ,ta được \(AC+BD>\frac{AB+BC+CD+AD}{2}\)
Vậy tổng hai đường chéo lớn hơn nửa chu vi
Kết hợp : AC + BD < AB + BC + CD + DA
Vậy \(\frac{AB+BC+CD+AD}{2}< AC+BD< AB+BC< CD+DA\)
b) Gọi tứ giác cần chứng minh là ABCD, giao điểm hai đường chéo AC và BD là O
Xét ΔABO có AO+OB>AB
Xét ΔCOD có OC+OD>CD
Xét ΔAOD có OA+OD>AD
Xét ΔBOC có OB+OC>BC
Ta có: AC+BD=AO+OB+OC+OD
\(\Leftrightarrow AC+BD>AB+CD\)
Ta có: AC+BD=AO+OD+OB+OC
\(\Leftrightarrow AC+BD>AD+BC\)
mà AC+BD>AB+CD
nên \(2\left(AC+BD\right)>AB+AD+BC+CD\)
\(\Leftrightarrow AC+BD>\dfrac{AB+AD+BC+CD}{2}\)
Xét ΔABD có BD<AB+AD
Xét ΔCBD có BD<BC+CD
Xét ΔABC có AC<AB+BC
Xét ΔADC có AC<AD+DC
Do đó: BD+BD+AC+AC<2(AB+AD+CD+BC)
\(\Leftrightarrow AC+BD< AB+AD+CD+BC\)(2)
Từ (1) và (2) ta suy ra ĐPCM
giả sử tứ giác ABCD có :AB=a;BC=b;CD=c;DA=d.
gọi O là giao điểm của AC và BD ta có :
tương tự AC+BD>B+D
suy ra 2(AC+BD)>A+B+C+D => AC+BD=a+b+c+d2
vậy tổng hai đường chéo lớn hơn nửa chu vi của tứ giác
theo bất đẳng thức tam giác ta có
AC<a+b; AC<c+d
BD<b+c ;BD<a+d
=>2(AC+BD)<2(a+b+c+d)
=>AC+BD<a+b+c+d
vậy tổng hai đường chéo nhỏ hơn chu vi của tứ giác
B/ Cho Tứ giác ABCD, kẻ AC, BD, gọi O là giao của AC và BD:
ta có: AC = AO + OC < AB + BC ( BĐT )
AC = AO + OC < AD + CD ( BĐT )
BD = OD + OB < AC + CD ( BĐT )
BD = OD + OB < AB +AD ( BĐT )
=> 2AO + 2BO + 2CO + 2DO < 2AB + 2BC + 2CD + 2DA
=> AO + BO + CO + DO < AB + BC + CD + DA
A/ Ta có: OA + OB> AB ( BĐT )
OB + OC> BC ( BĐT )
OC + OD> CD ( BĐT )
OD + OA> AD ( BĐT )
=> 2( OA + OB + OC + OD ) > AB + BC + CD + DA
=> OA + OB + OC + OD > \(\frac{AB+BC+CD+DA}{2}\)
( TRY HARD TO STUDY, FRIEND ! )